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Abstract
Transformer-based Language Models (LMs) excel in many tasks, but they appear to lack robustness in capturing crucial
aspects of event knowledge due to their reliance on surface-level linguistic features and the mismatch between language
descriptions and real-world occurrences. In this paper, we investigate the potential of Transformer-based Vision-Language
Models (VLMs) in comprehending Generalized Event Knowledge (GEK), aiming to determine whether the inclusion of a visual
component a!ects the mastery of GEK. To do so, we compare multimodal Transformer models with unimodal ones on a task
evaluating the plausibility of curated minimal sentence pairs. We show that current VLMs generally perform worse than their
unimodal counterparts, suggesting that VL pre-training strategies are not yet as e!ective to model semantic understanding
and resulting models are more akin to bag-of-words in this context.
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1. Introduction
Humans have rich knowledge about events and their typ-
ical participants. This is known as Generalized Event
Knowledge (GEK) [1]. GEK is a fundamental part of
commonsense knowledge, and plays a key role in lan-
guage processing as well as in reasoning. For instance,
GEK supports our intuitions about likely events (e.g., A
cop arrested a thief ), possible but implausible events (e.g.,
A thief arrested a cop), and impossible events (e.g., A stone
arrested a thief ). Event knowledge is intuitive for humans
because we perceive the world by simultaneously pro-
cessing information from di!erent modalities such as
textual, visual, and auditory [2]. In fact, GEK is acquired
through linguistic (e.g., reading and talking about events)
and sensorimotor experiences based on observing and
participating in real-world events.
Several works have investigated to what extent Lan-

guage models (LMs) possess GEK [3, 4]. These analyses
reveal that LMs have remarkable aspects of GEK, though
with important di!erences with respect to humans. This
prompts the question whether such di!erences might
stem from the way LMs acquire their knowledge. In fact,
even the most recent Transformer-based ones [5], do
not possess the same level of multimodal integration of
human learners, since they are trained solely on textual
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data, lacking key visual information like an object’s shape
and color. In this context, it is natural to ask whether
the recently introduced Vision-Language Models (VLMs)
possess capabilities that surpass those of text-only LMs
in modelling GEK due to their multimodal knowledge of
the world. Recent literature has shown that language in-
terpretation appear to not be improved using multimodal
architectures [6], and that in some cases VLMs behave
as bag-of-words models when it comes to interpreting
texts [7, 8].

We contribute to this line of research by carrying out a
comparative study of the performance of LMs and VLMs
in recognizing event plausibility. The dataset is formed
by sentences that di!er for the degree of plausibility of
the event they express and the argument animacy. Fur-
thermore, we explore the e!ect of event concreteness
on the performances of the models. Finally, we evaluate
the impact of actually including images describing test
events sentences as inputs for multimodal models. Our
analyses reveal that VLMs do not exhibit better perfor-
mances than LMs on semantic plausibility recognition,
with or without images as inputs. Further, we show how
more challenging sentences impact the performances of
VLMs, suggesting that they are less capable than LMs
in recognizing semantic di!erences that are a!ected by
word orders (e.g., with subject-patient inversion).

This paper is organized as follows. In Section 2 we de-
scribe related work. Then, Section 3 details the datasets
(Sec. 3.1), the tested models (Sec. 3.2), and the evaluation
procedure (Sec. 3.3). We show and discuss the obtained
results in Section 4. Finally, Section 5 draws some con-
clusions and highlights possible future works.
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2. Related Work
The introduction of multimodal models in NLP stems
from the intrinsic limitations of computational models
that are trained exclusively on distributional statistics
extracted from textual data [9, 3, 10]. In fact, they lack
referential competence [11], which prevents them from
grounding linguistic structures onto real-world experi-
ences [12, 13].

The earliest multimodal distributional models already
showed the ability to improve the semantic representa-
tion of concrete concepts and properties [14], as well as
abstract verbs that lack direct perceptual information,
but bene!t from integrating linguistic inputs and percep-
tual information [15]. However, they proved to be less
e"ective in representing verbs, adjectives, and abstract
concepts [16].
The introduction of Transformer-based VLMs such

as Visual-BERT [17] and FLAVA [18], and e"ective tech-
niques for Vision-Language Pre-training [19] paved the
way for new research in a multimodal setting. While
numerous studies has shown VLMs success on di"erent
multimodal tasks, less e"ort has been put in analyzing
their di"erences with unimodal counterparts on natural
language understanding (NLU). [20] show that both dual-
stream and single-stream VLMs are equally capable of
preserving NLU capabilities. The analysis conducted by
[6] shows that multimodal models do not signi!cantly
outperform the text-only variants in a language-only set-
ting. This was attributed to the use of narrow domain
data and direct extensions of NLP architectures. Our
work support these !ndings by focusing on understand-
ing the plausibility of events.

3. Experiments
Our goal is to evaluate the ability of LMs and VLMs to
predict the semantic plausibility of sentenceswith respect
to human judgements. In the following, we describe the
data used in the experiments (Sec. 3.1), the models we
considered in the evaluation (Sec. 3.2), and detail the
evaluation procedure itself (Sec. 3.3).

3.1. Data
We sourced our data from a number of existing datasets
containing pairs of sentences describing transitive event
distinguished by patient plausibility within the context
of the sentence. Plausibility is rated by humans and
expressed on a 1-7 Likert scale. Formally, each data point
consists of a plausible sentence Sp and its corresponding
implausible one Si obtained through a modi!cation of
Sp.
We considered the following datasets:

DTFit [21]. It includes past tense sentences distin-
guished by patient prototipicality. For each plau-
sible sentence, the implausible (i.e., atypical) one
is obtained by replacing the patient with an atypi-
cal !ller for that role (e.g., The actor won the award
vs The actor won the battle).

EventsAdapt [22]. It includes pairs of plausible-
implausible sentences where the implausible one
is obtained by reversing the noun phrases (e.g.,
The cop arrested the criminal vs. The criminal ar-
rested the cop). The dataset is divided into two
sub-datasets. In the former, henceforth referred
to as EventsAdaptAN−AN , both the agent and
the patient are animate. In the latter, denoted as
EventsAdaptAN−IN , the agent of the original
sentence is animate, while the patient is not. Thus
the implausible sentence is also semantically im-
possible.

EventsRev [23]. It includes concrete sentences describ-
ing events in the present progressive tense. Like
EventsAdapt, implausible sentences are obtained
by reversing the noun phrases, which in this case
always depict animate entities (e.g., The cat is
chasing the mouse vs. The mouse is chasing the
cat). Each sentence, both plausible and implausi-
ble, is accompanied by an image depicting the in-
teraction between the two animated participants
described in the sentence. The images are simple
black and white drawings.

As we are interested in considering also the e"ect of
concreteness in VLMs’ ability to recognize plausibility,
we further grouped sentences of EventsAdapt (and its
subgroups) and DTFit into concrete and abstract ones.
We categorized the sentences based on the level of con-
creteness of the verb, subject, and object in each sentence.
We chose to consider sentences that refer to abstract con-
cepts with high imageability as concrete (e.g., The priest
celebrated the marriage).
To the best of our knowledge, none of the data used

in this study was included in the training set of the eval-
uated models.

3.2. Models
We test various popular multimodal VLMs and com-
pare them with baseline unimodal LMs: BERT [24] and
RoBERTa [25]. As for the VLMs, our analysis includes:

VisualBERT [17]. A single-stream early fusion en-
coder model initialized from pre-trained BERT-
base weights and further trained on multimodal
datasets. Visual features are extracted from a pre-
trained Faster R-CNN network [26] and fed into
the transformer model alongside the text.

LXMERT [27]. A dual-stream early fusion encoder
model including some modality-speci!c lay-
ers and allowing cross-attention in speci!c co-
attention layers. Visual features are extracted
with a Faster R-CNN network.

ViLT [28]. A single-stream model employing a BERT
model for textual feature extraction and a ViT
model for visual feature extraction, respectively.
Resulting representations are then concatenated
and fed into the !nal model.

FLAVA [18]. A foundation VLM including an image
encoder, a textual encoder, and a multimodal en-
coder. It is jointly pre-trained on both unimodal
and multimodal data, thus learning high-quality
visual and textual representations. It is capable
of achieving both crossmodal alignment and mul-
timodal fusion objectives.

To adapt multimodal models to the text-only task, we
simply modi!ed the inputs, e.g. by feeding them empty
image tensors. FLAVA does not require to be adapted to
text-only inputs, as it can directly be evaluated by using
only the textual encoder.

All models and their pre-trained weights are available
on Huggingface Transformers [29].1

3.3. Evaluation procedure
To evaluate the ability of a LM (or VLM) to distinguish
between plausible and implausible sentences, we !rst
have to compute a plausibility score for each sentence.
Since we are dealing with bi-directional masked language
models, we can approximate this plausibility score via
pseudo-log-likelihood (PLL), de!ned as the sum of loga-
rithmic probabilities of each token based on the remain-
ing tokens in the sentence [30]. To avoid bias favoring
multi-token words, we apply an additional mask that cov-
ers tokens to the right of the target, as proposed in [4]. To
compare PLL scores with human judgements expressed
on a Likert scale, we normalized both using a min-max
scaler function.

First, we evaluated the models using an accuracy met-
ric. Speci!cally, considering all (Sp, Si) sentence pairs
for a dataset, we computed accuracy as the percentage
of cases for which PLL(Sp) > PLL(Si).
To provide a more detailed analysis of the perfor-

mances, we further evaluate the models via distribution
analyses. We used the Pearson correlation coe"cient
between each model’s score for the plausible and implau-
sible sentences. More in detail, for each pair of (Sp, Si),
we plot the correlation between normalized PLL(Sp)
and PLL(Si). High correlation implies similar scores

1https://huggingface.co/

for plausible and implausible sentences, indicating that
the model is less able to distinguish between them. Thus,
negative correlation values indicate good performances.
We also analyzed the density of the distributions for PLLs.
This is essential to comprehend how humans and models
di#erentiate between plausible and implausible classes,
aiding in evaluating sentence complexity and comparing
model behavior to humans’.

4. Results and Discussion
We !rst verify the performances of VLMs in plausibility
recognition via accuracy. Results of all models on the
datasets are reported in Table 1.
Both LMs and VLMs show signi!cantly higher per-

formances on EventsAdaptAN−IN , where implau-
sible sentences describe impossible events, than on
EventsAdaptAN−AN where implausible sentences de-
pict unlikely but not impossible events. On AN-AN sen-
tences, BERT, RoBERTa, VisualBERT, and FLAVA per-
formed above chance levels, while ViLT and LXMERT
performed at chance. This indicates that extracting in-
formation about AN-AN sentence plausibility is gener-
ally challenging, and more so for VLMs. Among VLMs,
FLAVA performs best, with results generally close to
RoBERTa.
Going further, we consider EventsAdapt and we pro-

vide the density plot of PLLs divided by plausibility for
each model and human raters in Figure 2, and plot the
correlation between PLLs of plausible and implausible
sentences in Figure 1.

Both LMs and VLMs do not clearly distinguish between
the two classes and exhibit very similar distributions for
plausible and implausible sentences. The complexity of
the task a#ect the results as well: for tasks where hu-
mans have no di"culty in distinguishing between the
two classes, as the implausible sentence violates the verb
selection preferences (AN-IN), themodels can better iden-
tify patterns that di#erentiate the two sentences (Fig 1a);
for tasks where even humans aremore uncertain (AN-AN),
the models tend to assign very similar scores to the two
sentences (Fig. 1b). This is also clearly shown by the den-
sity distribution plot in Figure 2. for the AN-IN case, the
density distribution for humans show a clear separation,
while models show more modest but still evident signs of
separation. The density distribution for AN-AN sentences
shows a less separated distribution for human scores and
almost entirely overlapped distributions for models. One
possible reason for this is that the grammaticality of a
sentence depends on syntactic rules that can be more
easily detected through statistical inference. In contrast,
linguistic acceptability may depend on extralinguistic
information requiring multiple inference levels.
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Table 1
Model accuracy on the di!erent datasets

Dataset Size Human BERT RoBERTa VisualBERT LXMERT ViLT FLAVA

DTFit 395 0.99 0.85 0.89 0.90 0.70 0.80 0.86
EventsAdaptAN−IN 128 1.00 0.93 0.95 0.93 0.72 0.84 0.95
EventsAdaptAN−AN 129 0.95 0.78 0.78 0.64 0.53 0.50 0.66
EventsRev 38 1.00 0.76 0.79 0.76 0.66 0.76 0.79

(a) AN-IN (128 tuples) (b) AN-AN (129 tuples)

Figure 1: Correlation plot on the EventsAdapt dataset for plausible and implausible sentences tuples. Significant di!erences
are marked with asterisks (∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001).

The role of concreteness. The experiments show that
VLMs do not show improved abilities to deal with GEK
and event plausibility with respect to textual LMs. How-
ever, we could expect that this might also depend on
the event concreteness, as concrete concepts are more
directly grounded on visual information than abstract
ones. The concreteness of an event depends on the the
predicate itself, as well on its arguments. For instance,
the verb to !ght has a concrete use in the sentence The
wrestler fought the opponent and an abstract use in The
patient fought the cancer. Cognitive research has shown
that abstract concepts require more linguistic experiences
to be understood [31]. Thus they are generally more dif-
!cult to acquire and process. This is in"uenced by two
main factors, namely imageability and familiarity [32].
For instance, the abstract verb to celebrate becomes more
concrete in the context of The priest celebrated the wed-
ding because it is easier to form mental images of the
event and it is very frequent in language use.

To evaluate how concreteness a#ects the models’ abil-
ities, we !rst compute the accuracy on concrete and ab-
stract subsets of the dataset. Results are reported in Ta-
ble 2. Multimodal models seem to perform worse on
abstract sentences with a higher degree of complexity:
on the EventsAdaptAN−AN dataset, the average per-
formance gap between abstract and concrete sentences

is higher for VLMs than for LMs (0.06 for LMs, 0.09
for VLMs); when considering the simpler sentences of
EventsAdaptAN−IN , the di#erences are less marked.
On the other hand, multimodalmodels demonstrate excel-
lent recognition of abstract events in the DTFit dataset.
Note however that abstract sentences are an order of
magnitude less than concrete ones in the dataset.
We also show a comparison of Pearson correlation

scores of results between EventsAdaptconcr
AN−AN and

DTFitconcr , shown respectively in Figures 3a and 3b.
While VLMs exhibit high correlation values, i.e. less
prowess on the task, values for DTFit are generally
lower, suggesting a better ability to assess plausibil-
ity. VLMs’ performance di#erence in the two datasets
may be due to how implausible sentences are generated.
EventsAdapt uses noun phrase order reversal, while DT-
Fit only replaces the typical patient with an incompatible
one. If VLMs behave more like bag-of-words models,
they may struggle to recognize semantic di#erences be-
tween sentences with the same words but di#erent or-
der. This would explain their worse performances on
EventsAdaptAN−AN .

The impact of images Finally, we analyze whether
including images of the (im)plausible test events in the
input is bene!cial for VLMs. We provide accuracy scores

Figure 2: Density plots (EventsAdapt AN-IN (128 pairs) and AN-AN (129 pairs))

Table 2
Accuracy on DTFit and EventsAdapt sentences distinguished by concreteness.

Dataset Size Human BERT RoBERTa VisualBERT LXMERT ViLT FLAVA

DTFitabstr 45 0.99 0.89 0.86 0.93 0.55 0.80 0.93
DTFitconcr 350 0.99 0.85 0.90 0.89 0.72 0.80 0.85
EventsAdaptabstrAN−IN 31 1.00 0.87 0.94 0.90 0.71 0.71 0.97
EventsAdaptconcr

AN−IN 97 1.00 0.95 0.95 0.94 0.72 0.88 0.95
EventsAdaptabstrAN−AN 64 0.96 0.75 0.80 0.56 0.47 0.47 0.62
EventsAdaptconcr

AN−AN 65 0.96 0.82 0.75 0.70 0.57 0.55 0.67

for VLMs on the EventsRev dataset in Table 3. Including
event images does not lead to any improvement: perfor-
mances either remain the same or slightly degrade.

Dataset VisualBERT LXMERT ViLT FLAVA

EventsRevt 0.76 0.66 0.76 0.79
EventsRevt+i 0.61 0.66 0.71 0.79

Table 3
Accuracy of VLMs on EventsRev with (t+ i) and without (t)
images in the input.

4.1. Discussion
Several interesting !ndings have emerged from our anal-
ysis. First, VLMs do not achieve signi!cantly higher accu-
racy values than unimodal ones in a semantic plausibility
recognition task. Second, we saw that performances of
VLMs is worse when dealing with more challenging sen-

tences represented byEventsAdaptAN−AN , exhibiting
lower accuracy and a high correlation between plausible
and implausible sentences. Third, we saw that including
images of events in the input does not lead to improved
model performances.
We discuss a possible interpretation of these !ndings

in the following. First, the generally high correlation be-
tween PLL scores for pairs of (Sp, Si) for VLMs suggest
that these models struggle to recognize semantic di"er-
ences, especially between sentences with di"erent word
orders (e.g., with subject-patient inversion), and relation-
ships between sentence components, like semantic roles.
This may be further indication that VLMs model lan-
guage in a bag-of-words fashion [7, 8]. The pre-training
method used in masked language modelling for VLMs,
adding visual features to languagemodels already special-
ized on linguistic tasks, may also compromise learning
as suggested by [33]. The high-dimensional space learnt
by these models could make it di#cult to identify se-
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and event plausibility with respect to textual LMs. How-
ever, we could expect that this might also depend on
the event concreteness, as concrete concepts are more
directly grounded on visual information than abstract
ones. The concreteness of an event depends on the the
predicate itself, as well on its arguments. For instance,
the verb to !ght has a concrete use in the sentence The
wrestler fought the opponent and an abstract use in The
patient fought the cancer. Cognitive research has shown
that abstract concepts require more linguistic experiences
to be understood [31]. Thus they are generally more dif-
!cult to acquire and process. This is in"uenced by two
main factors, namely imageability and familiarity [32].
For instance, the abstract verb to celebrate becomes more
concrete in the context of The priest celebrated the wed-
ding because it is easier to form mental images of the
event and it is very frequent in language use.

To evaluate how concreteness a#ects the models’ abil-
ities, we !rst compute the accuracy on concrete and ab-
stract subsets of the dataset. Results are reported in Ta-
ble 2. Multimodal models seem to perform worse on
abstract sentences with a higher degree of complexity:
on the EventsAdaptAN−AN dataset, the average per-
formance gap between abstract and concrete sentences

is higher for VLMs than for LMs (0.06 for LMs, 0.09
for VLMs); when considering the simpler sentences of
EventsAdaptAN−IN , the di#erences are less marked.
On the other hand, multimodalmodels demonstrate excel-
lent recognition of abstract events in the DTFit dataset.
Note however that abstract sentences are an order of
magnitude less than concrete ones in the dataset.
We also show a comparison of Pearson correlation

scores of results between EventsAdaptconcr
AN−AN and

DTFitconcr , shown respectively in Figures 3a and 3b.
While VLMs exhibit high correlation values, i.e. less
prowess on the task, values for DTFit are generally
lower, suggesting a better ability to assess plausibil-
ity. VLMs’ performance di#erence in the two datasets
may be due to how implausible sentences are generated.
EventsAdapt uses noun phrase order reversal, while DT-
Fit only replaces the typical patient with an incompatible
one. If VLMs behave more like bag-of-words models,
they may struggle to recognize semantic di#erences be-
tween sentences with the same words but di#erent or-
der. This would explain their worse performances on
EventsAdaptAN−AN .

The impact of images Finally, we analyze whether
including images of the (im)plausible test events in the
input is bene!cial for VLMs. We provide accuracy scores

Figure 2: Density plots (EventsAdapt AN-IN (128 pairs) and AN-AN (129 pairs))

Table 2
Accuracy on DTFit and EventsAdapt sentences distinguished by concreteness.

Dataset Size Human BERT RoBERTa VisualBERT LXMERT ViLT FLAVA

DTFitabstr 45 0.99 0.89 0.86 0.93 0.55 0.80 0.93
DTFitconcr 350 0.99 0.85 0.90 0.89 0.72 0.80 0.85
EventsAdaptabstrAN−IN 31 1.00 0.87 0.94 0.90 0.71 0.71 0.97
EventsAdaptconcr

AN−IN 97 1.00 0.95 0.95 0.94 0.72 0.88 0.95
EventsAdaptabstrAN−AN 64 0.96 0.75 0.80 0.56 0.47 0.47 0.62
EventsAdaptconcr

AN−AN 65 0.96 0.82 0.75 0.70 0.57 0.55 0.67

for VLMs on the EventsRev dataset in Table 3. Including
event images does not lead to any improvement: perfor-
mances either remain the same or slightly degrade.

Dataset VisualBERT LXMERT ViLT FLAVA

EventsRevt 0.76 0.66 0.76 0.79
EventsRevt+i 0.61 0.66 0.71 0.79

Table 3
Accuracy of VLMs on EventsRev with (t+ i) and without (t)
images in the input.

4.1. Discussion
Several interesting !ndings have emerged from our anal-
ysis. First, VLMs do not achieve signi!cantly higher accu-
racy values than unimodal ones in a semantic plausibility
recognition task. Second, we saw that performances of
VLMs is worse when dealing with more challenging sen-

tences represented byEventsAdaptAN−AN , exhibiting
lower accuracy and a high correlation between plausible
and implausible sentences. Third, we saw that including
images of events in the input does not lead to improved
model performances.
We discuss a possible interpretation of these !ndings

in the following. First, the generally high correlation be-
tween PLL scores for pairs of (Sp, Si) for VLMs suggest
that these models struggle to recognize semantic di"er-
ences, especially between sentences with di"erent word
orders (e.g., with subject-patient inversion), and relation-
ships between sentence components, like semantic roles.
This may be further indication that VLMs model lan-
guage in a bag-of-words fashion [7, 8]. The pre-training
method used in masked language modelling for VLMs,
adding visual features to languagemodels already special-
ized on linguistic tasks, may also compromise learning
as suggested by [33]. The high-dimensional space learnt
by these models could make it di#cult to identify se-
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(a) EventsAdaptconcr
AN−AN . (b) DTFitconcr .

Figure 3: Correlation plots for sentences in EventsAdaptconcr
AN−AN and DTFitconcr .

mantic errors. Moreover, models using pre-trained LM
weights for text processing may face limitations in the
type of visual information they can capture during train-
ing. Some models rely on object categories trained on
bounding boxes. This is computationally expensive, and
the learned representations may not adequately capture
shapes and relationships. Other models, such as ViLT,
that leverage ViT representations and use a linear func-
tion to extract embeddings for image patches, are less
costly but may result in lower-quality representations.
These results are in line with [33].

A possible explanation of why VLMs do not bene!t
from including test images is that in this speci!c case
(minimal sentence pairs with subject-object inversion)
the images for both sentences are very similar, and di"er
only for the relationship between the entities. The visual
encoders of the models might be too weak to di"erentiate
substantially similar images, leading the models to rely
on their LM priors and make random choices. Finally, we
saw that even the foundation Large VLMwe considered –
FLAVA – does not show signi!cantly improved accuracy
compared to other VLMs.

5. Conclusions and Future Works
In this paper, we presented a set of experiments aimed at
evaluating the ability of VLMs to model event plausibility
in both language-only and vision-language tasks against
LMs. We !nd that VL pre-training does not lead to a
signi!cant improvement compared to unimodal LMs in
this task aiming at testing their GEK. Speci!cally, we
observed that VLMs tend to perform worse when the
implausible sentence has a higher semantic complexity,
because it contains two animate nouns. Our analysis also
brings further support to argument that VLMs models

still behave similarly to Bag-of-Words models, regardless
of the degree of concreteness of the events.

In the future, we plan to focus on the analysis of models
with visual grounding as their training objective, such
as PaLM-E [34], a large embodied multimodal language
model that directly incorporates real-world continuous
sensor modalities into language processing. This may
shed more light into the abilities of large multimodal
models to achieve more human-level grounded language
understanding.
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mantic errors. Moreover, models using pre-trained LM
weights for text processing may face limitations in the
type of visual information they can capture during train-
ing. Some models rely on object categories trained on
bounding boxes. This is computationally expensive, and
the learned representations may not adequately capture
shapes and relationships. Other models, such as ViLT,
that leverage ViT representations and use a linear func-
tion to extract embeddings for image patches, are less
costly but may result in lower-quality representations.
These results are in line with [33].

A possible explanation of why VLMs do not bene!t
from including test images is that in this speci!c case
(minimal sentence pairs with subject-object inversion)
the images for both sentences are very similar, and di"er
only for the relationship between the entities. The visual
encoders of the models might be too weak to di"erentiate
substantially similar images, leading the models to rely
on their LM priors and make random choices. Finally, we
saw that even the foundation Large VLMwe considered –
FLAVA – does not show signi!cantly improved accuracy
compared to other VLMs.

5. Conclusions and Future Works
In this paper, we presented a set of experiments aimed at
evaluating the ability of VLMs to model event plausibility
in both language-only and vision-language tasks against
LMs. We !nd that VL pre-training does not lead to a
signi!cant improvement compared to unimodal LMs in
this task aiming at testing their GEK. Speci!cally, we
observed that VLMs tend to perform worse when the
implausible sentence has a higher semantic complexity,
because it contains two animate nouns. Our analysis also
brings further support to argument that VLMs models

still behave similarly to Bag-of-Words models, regardless
of the degree of concreteness of the events.

In the future, we plan to focus on the analysis of models
with visual grounding as their training objective, such
as PaLM-E [34], a large embodied multimodal language
model that directly incorporates real-world continuous
sensor modalities into language processing. This may
shed more light into the abilities of large multimodal
models to achieve more human-level grounded language
understanding.
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Abstract
English. Starting from the crowdsourcing experience of Pinocchio in Emojitaliano [1], the present paper intends to test
Chat-GPT’s ability to take on the Emojitaliano grammar and dedicated glossary to verify and reapply the Emojitaliano rules
in order to produce translations on its own. A test of re-translation of Pinocchio is presented here.
Italiano. A partire dall’esperienza in crowdsourcing di Pinocchio in Emojitaliano [1], il presente contributo intende testare la
capacità di Chat-GPT di assumere la relativa grammatica e il glossario dedicato per veri!care e riapplicare le regole della
emojilingua allo scopo di svolgere traduzioni in proprio. Si presenta qui un test di ritraduzione di Pinocchio.
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1. Introduction
Consisting today in over three thousand pictograms and
symbols, and regularly updated by Unicode Consortium,
the emoji international catalog contains signs for facial
expressions (smileys) and for human gestures, portraits
of people, plants and the animals, reproductions of food
and objects for everyday activities and sports, symbols of
travel and places. Whereas the visual content seems to
provide an encyclopaedic catalog with a universal status,
ideally able to signify language-independent meanings,
the interpretation of emojis is, on the contrary, heavily
arbitrary, subject to ambiguities and di"erences due to
linguistic and cultural speci!cities [2].
Some e"orts were made to develop an emoji based

language that could be shared among di"erent cultural
peoples. The !rst notable project that made an e"ort
of translating a classical novel (“Moby Dick” of Herman
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Melville), was the Emoji Dick project 1 by Fred Benenson
(2010). Starting from the English version of the novel,
each sentence was translated into an emoji version via
crowdsourcing. Each of Moby Dick’s 6,438 sentences has
been translated 3 times by di"erent Amazon Mechanical
Turk (MTurk) workers. The resulting emoji sentences
were then chosen by voting by another set of workers,
and the most popular version of each sentence was se-
lected for inclusion in the book. The outcome is a wonder-
ful but inconsistent translation of the same terms accord-
ing to the wisdom of the crowd in good sense, but without
any shared rules, structure or grammar, leading to the
impossibility of recovering the original text or meaning.
Another project was the translation of Lewis Carroll’s
“Alice’s Adventures in Wonderland” by Joe Hale2 (2014).
In this case, each word was directly translated into a
corresponding emoji. Consistency was thus guaranteed
as the same word was translated with the same emoji,
introducing a de-facto lexicon. Nonetheless, no grammar
structure is developed as the translation follows verbatim
the original text and its English-based word order.

In order to counteract the natural polysemy of emojis
[3], Emojitaliano3 was created through a social commu-
nity on Twitter (#scritturebrevi #emojitaliano), devoted
to the experimental crowdsourcing construction of an
international emoji code ‘emojilingua’ [4, 5]. The aim
of the project includes linguistic simpli!cation and the
possibility of reproducing a text in emoji that will be com-

1https://www.emojidick.com
2https://www.joehale.info/visual-poetry/wonderland.html
3https://www.treccani.it/vocabolario/emojitaliano


