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Abstract

Word co-occurrence patterns in language corpora contain a surprising amount of conceptual knowl-
edge. Large language models (LLMs), trained to predict words in context, leverage these patterns to
achieve impressive performance on diverse semantic tasks requiring world knowledge. An important
but understudied question about LLMs’ semantic abilities is whether they acquire generalized knowl-
edge of common events. Here, we test whether five pretrained LLMs (from 2018’s BERT to 2023’s
MPT) assign a higher likelihood to plausible descriptions of agent−patient interactions than to mini-
mally different implausible versions of the same event. Using three curated sets of minimal sentence
pairs (total n = 1215), we found that pretrained LLMs possess substantial event knowledge, outper-
forming other distributional language models. In particular, they almost always assign a higher like-
lihood to possible versus impossible events (The teacher bought the laptop vs. The laptop bought the
teacher). However, LLMs show less consistent preferences for likely versus unlikely events (The nanny
tutored the boy vs. The boy tutored the nanny). In follow-up analyses, we show that (i) LLM scores are
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driven by both plausibility and surface-level sentence features, (ii) LLM scores generalize well across
syntactic variants (active vs. passive constructions) but less well across semantic variants (synonymous
sentences), (iii) some LLM errors mirror human judgment ambiguity, and (iv) sentence plausibility
serves as an organizing dimension in internal LLM representations. Overall, our results show that
important aspects of event knowledge naturally emerge from distributional linguistic patterns, but also
highlight a gap between representations of possible/impossible and likely/unlikely events.

Keywords: Generalized event knowledge; World knowledge; Plausibility; Typicality; Artificial neural
networks; Language models; Syntax; Semantics

1. Introduction

1.1. Language and event knowledge

A vital component of human intelligence is our ability to learn, store, and flexibly use
rich, structured knowledge about the world. World knowledge spans different domains (from
physical properties to social conventions) and covers different types of information, including
knowledge of objects, agents, actions, and ideas. One important component of world knowl-
edge is our generalized event knowledge (GEK)—templates of common events observed in
the world (e.g., McRae & Matsuki, 2009). Humans acquire GEK both through sensorimo-
tor experiences (i.e., from participating in and observing events in the world) and through
linguistic experiences (i.e., from event descriptions generated by other people) (Dove, 2020;
Dove, 2023; Günther et al., 2020). Here, we ask: To which extent can GEK be learned simply
by tracking distributional properties of linguistic input?

On the one hand, positing that GEK can be learned from language alone appears to con-
tradict the fact that in humans, much of conceptual knowledge is innate (e.g., Spelke & Kin-
zler, 2007) or learned through direct experience (Meteyard & Vigliocco, 2008). On the other
hand, co-occurrence patterns learned from language exhibit a remarkable degree of corre-
spondence with distributional spaces learned through other modalities, like vision (Abdou
et al., 2021; Lewis, Zettersten, & Lupyan, 2019; Patel & Pavlick, 2021; Roads & Love, 2020;
Sorscher et al., 2021). This alignment suggests that language-based distributional informa-
tion might be able to replace other modalities as a source of world knowledge (Louwerse,
2011). Indeed, knowledge of events is abundantly represented in language corpora, presum-
ably because humans typically communicate events that are, were, or will be happening in the
world (e.g., McRae & Matsuki, 2009). Consequently, the GEK that can be learned from dis-
tributional linguistic knowledge might faithfully reflect the GEK that people typically acquire
multimodally.

1.2. LLMs as models of semantic knowledge

To disentangle contributions of distributional linguistic knowledge from other sources
of information—a feat that is difficult to accomplish in humans (e.g., Kim, Elli, & Bedny,
2019; Lewis et al., 2019; Ostarek, Van Paridon, & Montero-Melis, 2019)—we turn to large
language models (LLMs). LLMs are the latest generation of distributional semantic models
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(Lenci & Sahlgren, 2023), which learn rich semantic representations through tracking word
co-occurrence patterns in text in service of their training objective, that is, predicting the
next/a missing word from a given linguistic context. A wealth of research has demonstrated
that distributional semantic models can explain a broad range of phenomena in human
cognition, for example, synonym judgment (Landauer & Dumais, 1997; Levy, Bullinaria,
& McCormick, 2017), similarity judgments (Hill, Reichart, & Korhonen, 2015), semantic
priming effects in word naming and lexical decision tasks (Mandera, Keuleers, & Brysbaert,
2017). This makes them a useful tool for probing language representations in the human
mind and for understanding what kind of information can be learned from text alone.

We focus on LLMs that have been trained on large, general text corpora with a word-in-
context prediction objective, often referred to as “pretrained” LLMs. The word-prediction
objective enables these models to learn rich amounts of knowledge without being constrained
by specific task demands; moreover, this objective closely parallels the next-word-prediction
behavior observed in humans (e.g., Altmann & Kamide, 1999; Kuperberg & Jaeger, 2016;
Kutas & Federmeier, 2011; Levy, 2008; Mani & Huettig, 2012; McRae, Spivey-Knowlton, &
Tanenhaus, 1998; Shain, Blank, van Schijndel, Schuler, & Fedorenko, 2020; Smith & Levy,
2013; Traxler, Morris, & Seely, 2002), making it a cognitively plausible training function for
distributional language models (e.g., Goldstein et al., 2022; Hosseini et al., 2022; Schrimpf
et al., 2021). Due to the focus on models that capture the task-agnostic distributional language
spaces, fine-tuned LLMs are beyond the scope of this paper.

LLMs today generate grammatically correct, syntactically varied, and semantically relevant
texts, indicating that these models have essentially mastered formal linguistic competence,
that is, knowledge of the rules and patterns that govern natural language (Contreras Kallens,
Kristensen-McLachlan, & Christiansen, 2023; Mahowald et al., 2023; see also Piantadosi,
2023). However, their functional linguistic competence, that is, their general knowledge and
reasoning skills as expressed through language, remain highly debated (e.g., Bender & Koller,
2020; Mahowald, Diachek, Gibson, Fedorenko, & Futrell, 2023; Marcus, 2020). Despite their
seemingly remarkable success across a variety of tasks, such as generating syntactically and
semantically coherent paragraphs of text (Brown et al., 2020), sentiment analysis and logical
inference (e.g., Devlin et al., 2018; Liu et al., 2019; Radford et al., 2019; Yang et al., 2019),
closed-book question answering (QA) (Roberts, Raffel, & Shazeer, 2020), theory of mind
(Kosinski, 2023; Shapira et al., 2023; Trott, Jones, Chang, Michaelov, & Bergen, 2023), and
certain aspects of commonsense reasoning (e.g., Zellers et al., 2018), a closer examination of
LLM performance reveals that they frequently rely on low-level word-co-occurrence patterns,
which, when removed, drastically affect LLM performance (e.g., She et al., 2023; Ullman,
2023). This performance pattern stands in contrast to human performance, which is typically
robust to such low-level variations (although see Dasgupta et al., 2022; Lampinen, 2022 for
calls to not overestimate human performance).

Studies of world knowledge in LLMs have likewise produced mixed results. On the one
hand, even non-fine-tuned LLMs perform well on multiple tasks designed to probe world
knowledge, such as the Winograd Schema Challenge (WSC; Levesque, Davis, & Morgen-
stern, 2012), the Story Cloze Test (SWAG; Zellers et al., 2018), and the Choice of Plausible
Alternatives Test (COPA; Roemmele, Bejan, & Gordon, 2011), so much so that some authors
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have proposed and evaluated their use as off-the-shelf knowledge base models (Kassner,
Dufter, & Schütze, 2021; Petroni et al., 2019; Roberts et al., 2020; Tamborrino, Pellicanò,
Pannier, Voitot, & Naudin, 2020). On the other hand, studies using more fine-grained
tests have shown that world knowledge in contemporary LLMs is often brittle and depends
strongly on the specific way the problem is stated (Elazar et al., 2021a; 2021b; Ettinger, 2020;
Kassner & Schütze, 2020; McCoy, Pavlick, & Linzen, 2019; Niven & Kao, 2019; Pedinotti
et al., 2021; Ravichander, Hovy, Suleman, Trischler, & Cheung, 2020; Ribeiro, Wu, Guestrin,
& Singh, 2020). For example, some authors have noted that, when low-level co-occurrence
statistics are properly controlled for, LLMs that were considered to have high accuracy on
world knowledge tasks start to perform randomly (Elazar, Zhang, Goldberg, & Roth, 2021b;
Sakaguchi, Bras, Bhagavatula, & Choi, 2021), highlighting the potential discrepancy between
the word-in-context prediction objective (which benefits from tracking surface-level statistics)
and world knowledge acquisition (which should be invariant to surface-level statistics).

1.3. LLMs as models of GEK

In principle, LLMs should be well-posed to acquire GEK. First, significant subparts of
GEK are readily available in language co-occurrence statistics. This is evidenced by the
success of relatively small distributional semantic models, such as distributional selectional
preference models (Erk, 2007; Padó, Crocker, & Keller, 2006; Padó, Padó, & Erk, 2007),
or a more recent Structured Distributional Model (Chersoni et al., 2019), which explicitly
represents GEK as a distributional event graph (DEG) of syntagmatic relations extracted
from dependency-parsed corpora (see also Santus, Chersoni, Lenci, & Blache, 2017; Say-
eed, Shkadzko, & Demberg, 2015) on thematic fit modeling tasks (Vassallo et al., 2018).
Furthermore, Elman and McRae (2019) show that a small recurrent network trained with a
string prediction objective is able to extract GEK about certain events from a small set of
curated training set sentences.

Second, the increased scale of LLMs in comparison to earlier generations of distributional
semantic models of GEK (such as SDM)—for example, in terms of their numbers of param-
eters, training data size, or context window size—should be conducive for learning much
richer patterns of event knowledge than traditional distributional methods (e.g., Erk, 2012).
They should, therefore, be able to generalize their representations more easily to unseen event
descriptions. Moreover, the size of recent LLMs allows for the verbatim memorization of a
large number of text sequences (e.g., Carlini et al., 2021, 2022), which necessarily contain
event descriptions.

Third, the word-in-context prediction objective that LLMs are trained with is closely tied to
GEK in humans. A range of psycholinguistic studies shows that humans continuously predict
upcoming words in service of efficient and resource-optimal language comprehension (e.g.,
Altmann & Kamide, 1999; Kuperberg & Jaeger, 2016; Kutas & Federmeier, 2011; Levy,
2008; Mani & Huettig, 2012; McRae et al., 1998; Shain et al., 2020; Smith & Levy, 2013;
Traxler et al., 2002) and that, in doing so, they rely extensively on their GEK to dynamically
update their expectations (Bicknell, Elman, Hare, McRae, & Kutas, 2010; Ferretti, McRae, &
Hatherell, 2001; Hare, Jones, Thomson, Kelly, & McRae, 2009; Matsuki et al., 2011; McRae
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& Matsuki, 2009; McRae, Hare, Elman, & Ferretti, 2005). Knowledge of events is helpful for
predicting words from context since it helps restrict the range of possible, plausible contin-
uations to those that are compatible with the event interpretation triggered by the linguistic
context. For example, in the context Donna used the shampoo to wash her filthy ___, the
integration of the lexical items wash and shampoo triggers a washing subevent that renders
the mention of hair unsurprising relative to other possible patients of a generalized washing
event, such as car (Matsuki et al., 2011). Given the utility of deploying GEK for predicting
words from context in humans, a possible strategy for LLMs to succeed in word-in-context
prediction is to likewise construct rich internal, generalizable representations of event knowl-
edge from distributional linguistic information.

Nonetheless, the complexity and scale of GEK makes modeling it a challenging target
for any model relying on distributional semantic knowledge. First, language is sparse and the
possible combinatorial space of events and their arguments is vast, even in the relatively small
domain of transitive agent−patient interaction events that we focus on here. To assess the
plausibility of an arbitrary event, a successful model of GEK must, therefore, acquire robust,
generalizable representations of a vast number of actions and their associated restrictions
on event participants. Many traditional and current distributional models have been argued
to lack the representations of these building blocks for more complex semantic structures
(Lenci, 2023; Lenci & Sahlgren, 2023; Pedinotti et al., 2021; Zhu, Li, & De Melo, 2018). The
acquisition of GEK is complicated even more because the frequency with which events are
reported in the pragmatically influenced texts available in the world is not a robust indicator of
the frequency with which they occur in the real world (Gordon & Van Durme, 2013; see also
Section 4.3). Thus, it remains unclear whether the latest generation of distributional semantic
models acquire human-like robust, generalizable GEK from text co-occurrence statistics.

1.4. This study

In this work, we test whether pretrained LLMs encode human-like generalized world
knowledge in the domain of events. The term “event” has different meanings across disci-
plines and can encompass both an individual action or a sequence of several actions (Zacks,
2020; Zacks, Speer, Swallow, Braver, & Reynolds, 2007; see Kuperberg, 2021 for discus-
sion). Some research on event knowledge in LLMs, for example, asks whether LLMs trained
on word-in-context prediction encode human-like knowledge of event boundaries, investigat-
ing their capacity to replicate a fundamental aspect of human cognitive processing related
to understanding sequential events in narratives (Kumar et al., 2022; Michelmann, Kumar,
Norman, & Toneva, 2023; Wang, Jafarpour, & Sap, 2022).

Here, we define an event in the linguistic tradition, as a singular action along with the
entities that participate in that action in a particular role (e.g., Dowty, 1989; Fillmore, 1967;
Jackendoff, 1987). We focus on transitive two-participant events: agent−patient interactions,
such as The teacher bought the laptop. Our goal here is to explore implicit knowledge of
events in LLMs, operationalized as a systematic preference for generating descriptions of
plausible over implausible events. We investigate five open-source LLMs: MPT, GPT-J, GPT-
2, RoBERTa, and BERT, as well as a range of non-LLM distributional models.
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We hypothesize that, if GEK emerges naturally from the word-in-context prediction objec-
tive, pretrained LLMs should treat plausible sentences as more likely than implausible sen-
tences. If, on the other hand, distributional knowledge in pretrained LLMs does not consis-
tently reflect event knowledge, their event representations would fail to systematically align
with GEK.

To minimize the effect of confounding factors, we use highly controlled, syntactically
simple minimal sentence pairs drawn from three datasets. In two datasets (Datasets 1 and
3), plausibility is manipulated via swapping the agent and patient of the sentence (e.g., The
teacher bought the laptop vs. The laptop bought the teacher). This manipulation ensures iden-
tical word-level content within a sentence pair, such that the plausibility inference requires
identifying the role played by each participant (e.g., teacher = agent, laptop = patient). In
Dataset 2, plausibility is manipulated by replacing the patient of the event (e.g., The actor
won the award/battle). The three datasets were selected to span event descriptions across a
range of event participant compositions (interactions between two animate or one animate
and one inanimate event participant) as well as varying degrees of semantic incongruence of
the manipulated sentence (ranging from impossible to moderately implausible events). We
focus on our largest dataset (Dataset 1, see Methods) for most analyses but show in Sup-
porting Information that the findings extend to other datasets. We restrict ourselves to simple
event descriptions in English, with the caveat that our results might not generalize to other
languages (Atari et al., 2023; Blasi, Henrich, Adamou, Kemmerer, & Majid, 2022).

In Sections 3.1 and 3.2, we ask whether LLMs and humans assign higher likelihood scores
to descriptions of plausible events compared to their implausible counterparts. In Sections 3.3
and 3.4, we investigate the degree to which these scores are generalized, that is, abstracted
away from the surface-level properties of the input. Finally, we conduct detailed analyses
of LLM performance by studying their error patterns (Section 3.5) and the nature of their
internal representations of event plausibility (Section 3.6).

To foreshadow our key results, we find that LLMs possess substantial implicit event knowl-
edge and outperform strong baseline models. In particular, they systematically prefer events
that are possible (e.g., The teacher bought the laptop) to events that are, in the absence of
contextual information, impossible (e.g., The laptop bought the teacher). However, LLMs are
less consistent when distinguishing events that are likely (e.g., The nanny tutored the boy)
from events that are unlikely but not impossible (e.g., The boy tutored the nanny), although
their performance is still significantly above chance. Thus, we conclude that possible and
impossible events naturally segregate in the distributional linguistic space, whereas likely and
unlikely events segregate to a lesser extent, suggesting that some but not all kinds of event
knowledge can be naturally learned by tracking distributional linguistic knowledge.

2. Methods

2.1. Sentence sets

We compare event plausibility scores in humans and language models using three sentence
sets adapted from previous cognitive science and neuroscience studies (see Tables 1 and 2 for
a summary).
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Table 1
Sentence manipulations in Dataset 1

Item type Plausible? Possible? Sentence

animate-inanimate (AI) Yes Yes The teacher bought the laptop.
No No The laptop bought the teacher.

animate-animate (AA) Yes Yes The nanny tutored the boy.
No Yes The boy tutored the nanny.

Table 2
Sentence manipulations across the three datasets

Sentence set Plausible? Voice Synonym # Sentence

Dataset 1 Yes Active 1 The teacher bought the laptop.
(Fedorenko et al., 2020) 2 The instructor purchased the computer.

Passive 1 The laptop was bought by the teacher.
2 The computer was purchased by the

instructor.
No Active 1 The laptop bought the teacher.

2 The computer purchased the instructor.
Passive 1 The teacher was bought by the laptop.

2 The instructor was purchased by the
computer.

Dataset 2 Yes Active − The actor won the award.
(Vassallo et al., 2018) No Active − The actor won the battle.
Dataset 3 Yes Active − The cop is arresting the criminal.
(Ivanova et al., 2021) No Active − The criminal is arresting the cop.

2.1.1. Dataset 1—Main (based on Fedorenko, Blank, Siegelman, & Mineroff, 2020)
This sentence set contains 391 items, each of which includes (i) a plausible active sentence

that describes a transitive event in the past tense (e.g., The teacher bought the laptop) and (ii)
the implausible version of the same sentence, constructed by swapping the noun phrases (NPs)
(The laptop bought the teacher). The dataset also includes passive voice versions of the same
sentences (The laptop was bought by the teacher and The teacher was bought by the laptop).
Further, 249 of the 391 items are grouped into pairs where the sentences consist of words
with synonymous, or closely related, meanings (e.g., The teacher bought the laptop and The
instructor purchased the computer). For simplicity, we call those sentences “synonymous”
throughout the paper.

The items are split into two types: (1) animate-inanimate (AI) items (e.g., The teacher
bought the laptop vs. The laptop bought the teacher; n = 128; 76 with synonyms); (2)
animate-animate (AA) items (e.g., The nanny tutored the boy vs. The boy tutored the nanny; n
= 129; 82 with synonyms). Due to the animacy differences, the role reversal manipulation on
AI sentences often violates the animacy selectional restrictions on the verb, making the sen-
tence mostly semantically impossible, whereas the plausibility violations in AA sentences are
more graded. Finally, the dataset includes a set of animate-animate, reversible (AA-control)
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items (n = 134; 78 with synonyms), where both event participants are animate and both
agent-patient combinations are plausible (e.g., The cheerleader kissed the quarterback vs.
The quarterback kissed the cheerleader) and that we used as control in some of the analyses.

2.1.2. Dataset 2 (DTFit; based on Vassallo et al., 2018)
This sentence set contains 395 items, each of which includes (i) a plausible active sentence

that describes a transitive event in the past tense, where the animate agent entity is interacting
with an inanimate patient entity that is prototypical/canonical for the agent (e.g., The actor
won the award), and (ii) the less plausible version of the same sentence, constructed by vary-
ing the inanimate patient entity (The actor won the battle). Plausibility depends on the entire
<agent, verb, patient> triple rather than just on the <agent, verb> or <verb, patient> com-
bination. All sentence pairs in this dataset describe interactions between an animate agent and
an inanimate patient, making them most comparable to the AI sentence pairs from Dataset 1.
However, unlike in Dataset 1, word content and not word order distinguishes between plausi-
ble and implausible sentences within a pair. Note further that the plausibility manipulation in
this sentence set is graded: the events can be described as typical/atypical rather than possi-
ble/impossible.

2.1.3. Dataset 3 (based on Ivanova et al., 2021)
This sentence set contains 38 items, each of which includes (i) a plausible active sentence

that describes a transitive event in the present tense (e.g., The cop is arresting the crimi-
nal), and (ii) the implausible version of the same sentence, constructed by swapping the NPs
(The criminal is arresting the cop). All sentence pairs in this dataset describe nonreversible
interactions between two animate entities, making them comparable to the AA sentence pairs
from Dataset 1. As in Dataset 1, only word order but not word content distinguishes between
plausible and implausible sentences within a pair.

The majority of the sentences in Datasets 1 and 3 and all sentences in Dataset 2 use single
nouns as subjects and objects; a small subset of sentences in Datasets 1 and 3 use multi-word
NPs (e.g., social worker). All active voice sentences in Datasets 1 and 2 and most sentences
in Dataset 3 use the structure “Subject-Verb-Direct Object”; a small subset of sentences in
Dataset 3 also contain indirect objects (A doctor is using a stethoscope on the patient). All
datasets can be found at https://github.com/carina-kauf/lm-event-knowledge.

2.2. Human data collection

For all three sentence sets, we compared language model predictions with human plausi-
bility judgments. Human judgments for Dataset 2 had been previously collected by Vassallo
et al. (2018) on Prolific, a web-based platform for collecting behavioral data. Participants
in this experiment answered questions of the form “How common is it for an actor to win
an award?” on a Likert scale from 1 (very atypical) to 7 (very typical). Human judgments
for Datasets 1 and 3 were collected on Amazon Mechanical Turk, another web-based plat-
form. Here, participants evaluated the extent to which each sentence was “plausible, i.e.,
likely to occur in the real world” on a Likert scale from 1 (completely implausible) to
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7 (completely plausible). The protocol for the study was approved by MIT’s Committee on the
Use of Humans as Experimental Subjects (COUHES). All participants gave written informed
consent in accordance with protocol requirements.

For Dataset 1 (our main dataset), we recruited 966 participants, restricting our task to par-
ticipants with IP addresses in the United States. The sentences were divided into 32 experi-
mental lists such that each of the items occurred only in one of its versions in any given list.
The median response time was 20.6 min. Each participant completed between 1 and 3 lists
(mean = 1.1).

Participants were included in the analyses if they satisfied all the following criteria: (i)
self-reported location (“USA”), (ii) native English proficiency (evaluated via self-report and
two-sentence completion trials), (iii) fewer than 20% of blank responses, and (iv) accurate
responses to attention checks (“Please select the leftmost/rightmost option”). We additionally
filtered participants based on their responses to the AI items (The teacher bought the laptop
vs. The laptop bought the teacher), retaining participants with a minimum plausibility differ-
ence of 1 point (out of 7) between plausible and implausible items in this condition. These
criteria left data from 658 participants for analysis. Each sentence had a minimum of 18 rat-
ings (average: 22.9 ratings; maximum: 27 ratings). Participants were paid $4.25 (estimated
completion time was 25 min), with payment contingent only on the attention-check questions
and excessive blank responses (>30%).

For Dataset 3, we recruited 100 participants, restricting our task to participants with IP
addresses in the United States. The sentences were divided into two experimental lists and
each of the items occurred only in one of its versions in any given list. The median response
time was 15.7 min. Each participant completed one list. We filtered the data using the same
criteria as for Dataset 1, except for the sentence completion trials for assessing English pro-
ficiency (which were not included) and the minimum plausibility difference criterion. The
inclusion/exclusion criteria left data from 96 participants for analysis (48 ratings per sen-
tence). Participants were paid $2.70, with payment contingent only on the attention-check
questions and excessive blank responses (>30%).

2.3. Model description and score estimation

2.3.1. Large language models
We tested five attention-based Transformer (Vaswani et al., 2017) language models: MPT

(The MosaicML NLP Team, 2023), GPT-J (Wang & Komatsuzaki, 2021), GPT-2 (Radford
et al., 2019), RoBERTa (Liu et al., 2019), and BERT (Devlin et al., 2018). GPT-2, GPT-J, and
MPT are unidirectional (aka autoregressive or causal) models, trained to predict upcoming
words based only on left context (e.g., The teacher bought the <MASK>). BERT and
RoBERTa are bidirectional models; their primary training task is predicting masked words
in the input based both on left and right context (e.g., The <MASK> bought the laptop). For
all Transformer models, we used pretrained implementations available via the HuggingFace
Transformers library (Wolf et al., 2020). Specifically, we investigated the following model
instantiations: mpt-30b (Number of layers, L = 48; Hidden size, H = 4096), gpt-j-6B (L =
28, H = 4096), gpt2-xl (L = 28, H = 4096), roberta-large (L = 24, H = 1024), bert-large-
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cased (L = 24, H = 1024), that is, the largest pretrained version per model available via
HuggingFace. See Table S1 for more information about the LLMs’ architecture and training.

For the unidirectional LLMs, we define the sentence score as the sum of the log-
probabilities of each token wi in the sequence, conditioned on the preceding sentence tokens
w<i.

For the bidirectional LLMs, we define the sentence score as a variant of the sentence’s
pseudo-log-likelihood score (PLL). The original PLL scoring method defines a sentence’s
score as the sum of the log-probabilities of each token given all other tokens (Salazar, Liang,
Nguyen, & Kirchhoff, 2020; Wang & Cho, 2019). This method, however, yields inflated
scores for multitoken words (Kauf & Ivanova, 2023). Here, we use the improved PLL scoring
method introduced by Kauf and Ivanova (2023), which avoids this bias by masking not only
the target token, but also all within-word tokens to the right of the target during inference.
We show in Figs. S11 and S12 that sentence generation likelihood is a more robust indica-
tor of event knowledge in bidirectional LLMs than other prediction-based metrics, such as
last-word prediction probability or verb prediction probability for our datasets.

To encourage transparency in the NLP community, we do not report results from closed
models, such as GPT-3. We also do not report results from models that have been fine-tuned
on additional objectives, such as reinforcement learning from human feedback: our goal is to
specifically test world knowledge encoded in the distributional patterns learned via word-in-
context prediction.

2.3.2. Baseline models
To investigate whether knowledge of event plausibility depends on specific linguistic pat-

terns, we additionally compared the performance of the LLMs against four baseline models.
This comparison allows us to evaluate the added value of LLMs in comparison to more “tradi-
tional” but less complex distributional semantics models, typically trained on a much smaller
amount of data (Lenci & Sahlgren, 2023).

TinyLSTM is a two-layer LSTM recurrent neural network trained with a next-word pre-
diction objective on the string data from the 1-million-word English Penn Treebank §2-21
(Marcus, Santorini, & Marcinkiewicz, 1993). Like for unidirectional LLMs, a sentence score
for TinyLSTM is estimated as the sum of negative log probabilities of each token conditioned
on the preceding tokens. The model is available through the LM Zoo library (Gauthier et al.,
2020).

Thematic fit models the degree of semantic compatibility between an event’s “prototype”
verb argument, calculated from distributional text information (McRae et al., 1998), and the
role filler proposed by the sentence. We follow the approach for calculating prototypical argu-
ment representations by Lenci (2011) and compute a prototype representation for the event
patient slot as the centroid vector representations from the most associated entities with the
predicate and agent in the sentence. However, instead of computing updates to the prototype
using Distributional Memory vectors (as in Lenci, 2011), we here do the same computations
using FastText (Bojanowski, Grave, Joulin, & Mikolov, 2017) static embeddings (see also
Rambelli, Chersoni, Lenci, Blache, & Huang, 2020). A sentence’s plausibility score is
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computed as the cosine similarity between the FastText embedding of the proposed patient
and the relevant prototype vector.

The Structured Distributional Model (SDM; Chersoni et al., 2019) is a model of thematic
fit that computes both a context-independent and a context-dependent representation of the
prototype role filler based on the current linguistic context. The context-independent repre-
sentation is obtained via summing the FastText embeddings of all lexical items in the current
linguistic context. The context-dependent representation is derived based on a dynamic rep-
resentation of the context: given the lexical items in the current context and the syntactic
function of the next word to be predicted, SDM queries a DEG to retrieve the words with
the strongest statistical associations with those items for the target function (the DEG was
extracted from a large number of dependency-parsed corpora: words are linked with their
syntactic collocates and the links weighted with mutual information scores). It then computes
the centroid of the FastText embeddings associated with the highest-ranked lexical entities
according to DEG. Finally, a sentence’s plausibility score is calculated as the sum of the
SDM thematic fit scores for each verb argument (in our case: agent and patient), whereby
each score is derived as the average cosine similarity of the argument filler’s representation
with the context-dependent and context-independent prototype representations of the role.

Lastly, the PPMI-syntax model quantifies the statistical association between verbs and their
dependents (marked for syntactic role, i.e., PPMI(arrest, copsubj) �= PPMI(arrest, copobj)) in
terms of Positive Pointwise Mutual Information (PPMI). It is trained on the same dependency-
parsed corpus as SDM. We apply Laplace smoothing and compute the plausibility score of a
sentence as the PPMI score between the verb and the subject plus the PPMI score between
the verb and the object.

See Supporting Information 2 for additional baseline model description details.

2.4. Binary accuracy estimation

To assess GEK in language models and in humans, we present them with minimally differ-
ent plausible versus implausible event descriptions (Section 2.1). We evaluate their ability to
assign a higher score to the plausible event description than the implausible one (Sections 2.2
and 2.3). Human scores were averaged to obtain a single score for each sentence. For each
sentence pair, we assigned a score of 1 if the model/human subject pool succeeded on this
task, that is, if a higher score was assigned to the plausible version of the sentence and 0
otherwise.

2.5. Word frequency estimation

To account for potential effects of word frequency, we estimated the average frequency
of the word/phrase denoting the agent, patient, and verb of each sentence, as well as the
average frequency of all words in the sentences. Frequency was operationalized as the log of
the number of occurrences of the word/phrase in the 2012 Google NGram corpus. Laplace
smoothing was applied prior to taking the log.
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2.6. Probing analysis

To investigate the emergence of explicit plausibility information in LLMs, we trained a
decoding probe to distinguish plausible and implausible sentences from their embeddings
at different LLM layers. Separate logistic regression classifiers were trained for each model
layer and the static word embedding space of the models. For each sentence, the input was
the model-specific sequence summary token; the output was a binary plausibility label. The
choice of model-specific sequence summary tokens followed the default settings from Hug-
gingface Transformers: for the bidirectional LLMs, BERT and RoBERTa, we used the repre-
sentation of the special token [CLS], which was prepended to each stimulus and was designed
and trained specifically for sequence classification tasks. For the unidirectional LLMs, GPT-J
and GPT-2, we prepared the stimulus by adding the [EOS] token to the beginning and end
of the sequence and used the representation of the final token as the sequence’s summary
representation. For all analyses, probes were trained using 10-fold cross-validation, ensuring
that plausible and implausible versions of the same sentence remain in the same split (train or
test). To estimate the best-case model performance, we computed empirical ceiling values by
training probes on the average human plausibility ratings for each sentence. The probe setup
and the cross-validation procedure for ceiling probes were the same as for LLM probes.

To probe the generalization ability of the LLMs, we trained the classifiers on just one type
of sentence (either on specific animacy combinations, AI or AA, or specific voice, active or
passive) and evaluated the performance on the held-out type.

We used sklearn’s (Pedregosa et al., 2011) Logistic Regression module with a liblinear
solver for all probing analyses.

2.7. Statistical analyses

2.7.1. Binary accuracy
Binary accuracy results were compared to chance performance of 0.5 using a binomial test.

Tests of equal proportion were used to compare model performance to human performance,
as well as AI sentence accuracy to AA sentence accuracy within each metric.

2.7.2. Correlations
All reported correlations are Pearson correlations. Correlation significance was assessed

using the test for correlation for paired samples (cor.test in R). Model correlation was com-
pared to human correlation using the cocor package’s (Diedenhofen & Musch, 2015) imple-
mentation of (Raghunathan, Rosenthal, & Rubin, 1996) test for nonoverlapping correlations
based on dependent groups.

2.7.3. Mixed effects modeling
We fitted separate linear mixed effects models to human ratings and each language

model’s scores. The key predictors for Dataset 1 were plausibility, item type (AI vs. AA vs.
AA-control), and voice (active vs. passive), as well as interactions between them. We also
included agent, patient, verb, and average sentence frequencies, sentence length in tokens
(for LLMs) or words (for humans and baseline models). Random effects included the item
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number intercept and item number by plausibility slope. For Datasets 2 and 3, the formula
was simplified to account for dataset structure (i.e., no item type or voice predictors).

Continuous variables were normalized before fitting. We used dummy coding for plausi-
bility, with “plausible” as the reference level, dummy coding for item type, with “AA” as
the reference level, and sum coding for voice. The analysis was conducted using the lme4 R
package (Bates et al., 2014).

2.7.4. Probing analyses
To compare the performance of probing classifiers across LLM layers, we divided LLM

layers into three same-sized groups: early, middle, and late. Within each layer group, we
compared average probe performance to the ceiling value (probe trained on human ratings;
see Section 2.4), as well as the linear trend within each layer group (i.e., whether classifier
performance increases, decreases, or stays constant within that layer group).

In all analyses, the results were False-Discovery Rate (FDR)-corrected for the number of
models within each category (humans, LLMs, and baselines). For probing analyses, the results
were additionally corrected for the number of classifiers used within each analysis (e.g., 5 for
generalization across trial types; 5 classifiers × 5 LLMs = 25 comparisons). Analysis code
and data files can be found on GitHub: https://github.com/carina-kauf/lm-event-knowledge.

3. Results

We report a variety of tests to establish whether pretrained LLMs are sensitive to event plau-
sibility. In our main test (Sections 3.1 and 3.2), we investigate whether LLMs systematically
assign higher scores to the plausible sentence compared to the implausible sentence within
the minimal pair. We compare LLM performance with human performance (whether crowd-
sourced plausibility scores are higher for plausible than for implausible sentences within each
pair) and with baseline model performance. Then, we move beyond the minimal pair setup to
conduct detailed analyses of all sentence scores, in order to determine the relative contribu-
tions of event plausibility and surface-level properties to LLM sentence scores (Section 3.3).
We investigate whether the event knowledge acquired by LLMs is generalized and systematic
(Section 3.4), conduct an error analysis of LLM performance (Section 3.5), and use a probing
analysis to track the emergence of explicit event plausibility signatures across LLM layers
(Section 3.6).

3.1. All models show a gap between impossible and unlikely events

Our main sentence set (Dataset 1) contains two types of plausible-implausible sentence
pairs: AI (animate−inanimate interactions, e.g., The teacher bought the laptop vs. The laptop
bought the teacher) and AA (animate−animate interactions, e.g., The nanny tutored the boy
vs. The boy tutored the nanny). In most cases, AI plausibility violations result in impossible
events, whereas AA plausibility violations make the event unlikely but not impossible. We
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Fig. 1. Main results, Dataset 1 sentences. Human, LLM, and baseline model accuracy scores for AI (left) and AA
(right) sentence pairs. Significance was established via a binomial test. Here and elsewhere, significant results are
marked with asterisks (p<.05: *; p<.01: **; p<.001: ***). Error bars show the standard error of accuracy scores
across sentence pairs.

found that all language models exhibited differential performance on these sentence sets,
with substantially better results for AI than for AA sentence pairs (Fig. 1).

In the main analysis, we tested whether models systematically assign higher likelihood
scores to plausible versus implausible sentences within each minimal sentence pair. For each
sentence pair, a model received a score of 1 if it assigned a higher score to the plausible version
of the sentence and 0 otherwise. The same procedure was performed on human plausibility
ratings for each sentence pair.

3.1.1. AI sentence performance is high
All models showed good performance on AI sentences (Fig. 1A, left). MPT and RoBERTa

scores were not significantly different from the human accuracy of 1, and other LLMs also
had high performance, although slightly lower than humans (MPT: accuracy 0.97, χ2 = 2.29,
p = .145; GPT-J: accuracy 0.93, χ2 = 7.37, p = .011; GPT-2: accuracy 0.95, χ2 = 4.27, p =
.049; RoBERTa: accuracy 0.98, χ2 = 1.35, p = .245; BERT: accuracy 0.95, χ2 = 4.27, p =
.044). Baseline model performance was above chance, although not as high as that of LLMs
and significantly lower than human performance; the best-performing baseline model was
SDM, which was designed specifically to capture thematic fit for agent-verb-patient triplets
(tinyLSTM: accuracy 0.80, χ2 = 25.53, p<.001; SDM: accuracy 0.90, χ2 = 11.66, p<.001;
thematicFit: accuracy 0.73, χ2 = 36.93, p<.001; syntax-PPMI: accuracy 0.66, χ2 = 50.74,
p<.001).

3.1.2. AA sentence performance is moderate
On AA sentences, all LLMs still performed above chance (Fig. 1A, right) but their perfor-

mance was significantly below the human accuracy of 0.95 (MPT: 0.84, χ2 = 13.57; GPT-J:
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Table 3
Difference in performance between AI and AA sentence pairs

Category Metric Difference χ2 p-value

Human Human 0.05 5.24 .022*
LLMs MPT 0.13 11.21 <.001***

GPT-J 0.18 13.84 <.001***
GPT-2 0.22 21.34 <.001***

RoBERTa 0.19 20.92 <.001***
BERT 0.19 16.88 <.001***

Baselines tinyLSTM 0.3 24.37 <.001***
SDM 0.41 48.84 <.001***

thematicFit 0.11 3.33 .091
syntax-PPMI 0.1 2.2 .138

0.75, χ2 = 27.12; GPT-2: 0.74, χ2 = 29.73; RoBERTa: 0.78, χ2 = 22.04; BERT: 0.77, χ2
= 24.56; all p<.001). All baseline models performed at chance except for thematicFit (accu-
racy 0.62), indicating that information about AA event plausibility is more difficult to extract
from subject-verb-object co-occurrence patterns in natural language than information about
AI event plausibility.

3.1.3. The gap between AI and AA sentences is significant
As shown in Table 3, humans, LLMs, and two of the baseline models all show a per-

formance gap between AI and AA sentence sets. However, the size of the gap for the
models (average 0.18 for LLMs, 0.23 for baseline models) is much larger than the one in
humans (0.05), a result we discuss further in Section 4.5. LLMs and most baseline mod-
els show comparable performance on the passive voice versions of AI and AA sentences
(Fig. S4).

For completeness, we also test the models on a set of AA-control items from Dataset 1,
for which both sentences in a pair describe a plausible event (e.g., The cheerleader kissed
the quarterback vs. The quarterback kissed the cheerleader). As expected, in that case, the
models produced comparable scores for the two events within each pair, as did humans (Figs.
S5 and S6).

3.1.4. Model-human score correlations also reflect the AI-AA gap
We directly correlate model scores with human ratings (Fig. S7) and show that the corre-

lation is moderate for AI sentences (mean LLM r = .59) and poor for AA sentences (mean
LLM r = .17). Note, however, that we would not necessarily expect LLM scores to fully align
with human plausibility judgments, given that the models’ task is word-in-context prediction,
not plausibility evaluation per se. Nevertheless, this analysis helps reveal dissociable con-
tributions of plausibility and language-specific features on LLM sentence likelihood scores,
which we explore further in Section 3.3.
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3.1.5. Scaling helps to partially bridge the AI-AA gap
To investigate the effect of LLM size on performance in more detail, we tested an extended

set of seven unidirectional models (with MPT being the largest) on AI and AA minimal pair
performance (Table S5 and Fig. S8). We found consistently high performance on AI sentences
across all tested models (even the smallest, DistilGPT-2 and the base GPT-2). AA sentence
performance increased steadily with model size, although, as noted above, the gap was not
fully bridged even for the 30-billion-parameter MPT model.

3.1.6. Quantitative analysis confirms the validity of the binary labels
To ensure that our binary accuracy results reflect meaningful plausibility differences in

human ratings, we compute the average difference between plausible and implausible sen-
tence scores within each pair. This value can range from −1 to 1 (with 1 reflecting a situation
where people rated all plausible sentences as completely plausible and all implausible sen-
tences as completely implausible). The mean difference was 0.78 (SD = .18) for AI sentences
and 0.38 (SD = .24) or AA sentences, confirming the validity of our binary labels (see Sec-
tion 3.5 for more details).

3.2. The gap in model performance between implausible and impossible events is not fully
explainable by animacy or lexical variables

The gap between model performance on AI and AA sentences from Dataset 1 could be
explained by several factors. First, implausible AI sentences in Dataset 1 mostly described
impossible events (The laptop bought the teacher), whereas implausible AA sentences were
often unlikely rather than impossible (The boy tutored the nanny), which resulted in a wider
distribution of plausibility scores in humans (Fig. 3B). Second, as follows from their name,
AI sentences described animate−inanimate interactions, such that switching the agent and
the patient typically violated the animacy selectional restriction on the verb; in contrast, AA
sentences described animate−animate interactions, so our plausibility manipulation did not
violate the animacy restriction. Finally, the AA sentences were more difficult overall (human
accuracy 0.95 vs. 1 for AI sentences), possibly because AA sentences had a lower average
word frequency (Google Ngram log frequency of 10.8 for AA vs. 11.1 for AI). To determine
whether the latter two factors might explain differential model performance, we compared
model and human performance on two additional sentence sets.

3.2.1. Dataset 2 (based on Vassallo et al., 2018)
This sentence set describes animate−inanimate (AI) interactions; plausibility is manipu-

lated by varying the patient (e.g., The actor won the award vs. The actor won the battle;
Table 2). Unlike AI sentences in Dataset 1, implausible sentences here are simply unlikely
rather than impossible. This difference is reflected in the distribution of human judgments for
this sentence set, which are less polarized than for AI sentences from Dataset 1 (mean differ-
ence 0.55; see Fig. S9 for details). If argument animacy determines model performance, their
accuracy on Dataset 2 should be similarly high to that for AI sentences from Dataset 1. If, on
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Fig. 2. Human and model performance patterns on Dataset 1 (the first and last set of bars; same data as in Fig. 1),
as well as Datasets 2 and 3 (the second and third set of bars); results ordered by LLM performance. Dotted lines
indicate chance-level performance.

the other hand, unlikely events are more challenging for the models to evaluate compared to
impossible events, then models should perform better on AI sentences from Dataset 1.

All models scored above chance but significantly below human performance of 0.99 (MPT:
0.93, χ2 = 20.8; GPT-J: 0.89, χ2 = 40.5; GPT-2: 0.88, χ2 = 46.1; RoBERTa: 0.91, χ2
= 29.5; BERT: 0.86, χ2 = 55.3; all p<.001). Average LLM performance on this sentence
set (0.89) is higher than on AA sentence pairs from Dataset 1 (0.78) but is lower than on
possible-impossible AI sentence pairs from Dataset 1 (0.96) (Fig. 2). We, therefore, conclude
that distinguishing likely and unlikely events remains a nontrivial challenge for LLMs even
for AI sentences.

Further, the words in Dataset 2 are on average more frequent (log word frequency for
Dataset 2: 11.5; log word frequency for AI sentences in Dataset 1: 11.1). We conclude that
word frequency cannot fully account for the performance gap either.

3.2.2. Dataset 3 (based on Ivanova et al., 2021)
Dataset 3 is a small sentence set from a neuroimaging study by Ivanova et al. (2021) with

the same manipulation as in Dataset 1: implausible sentences are generated by switching
the agent and the patient (The cop arrested the criminal vs. The criminal arrested the cop;
Table 2). Both agents and patients are animate. Average word frequency is higher than in
Dataset 1 sentences (Google Ngram log frequency of 11.9), and human ratings are more
polarized than those of AA sentences from Dataset 1 (mean difference for Dataset 3 = 0.76).
Human accuracy for distinguishing plausible and implausible sentences in this dataset was 1,
meaning that the plausibility judgments for this dataset were easy and unambiguous.

All models performed above chance but below human performance, who had perfect accu-
racy on this task, although the difference was nonsignificant for MPT and BERT (MPT: 0.89,
χ2 = 2.37, n.s.; GPT-J: 0.82, χ2 = 5.66, p = .023; GPT-2: 0.84, χ2 = 4.52, p = .038;
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RoBERTa: 0.79, χ2 = 6.85, p = .014; BERT: 0.89, χ2 = 2.37, n.s.). Similar to Dataset 2,
average LLM performance on this sentence set (0.85) falls between performance on AI sen-
tences from Dataset 1 (0.96) and on AA sentences from Dataset 1 (0.78) (Fig. 2). Although
this dataset is too small to draw definitive conclusions, the results suggest that the perfor-
mance gap between impossible and unlikely events in Dataset 1 cannot simply be explained
by the fact that likely-unlikely sentence pairs were more challenging.

Together, the results from Sections 3.2.1 and 3.2.2 suggest that although event partici-
pant animacy and word frequency contribute to model performance, they do not fully explain
performance patterns. In particular, unlikely sentences (across animacy configurations) pose
challenges for LLMs despite being easy for humans.

Baseline model performance on Datasets 2 and 3 follows similar patterns to LLMs (Fig. 2).
In the remainder of the paper, we focus on LLM performance; detailed analyses of baseline
model performance can be found in Supporting Information 3.

3.3. LLM scores are strongly influenced by surface-level sentence properties

So far, we have focused on comparing model scores within minimal pairs. Now we ask:
to what extent do model scores dissociate for all plausible and implausible sentences in our
datasets?

Under the view of LLMs as knowledge bases (Petroni et al., 2019), one might expect LLM
scores to strongly track real-world plausibility, such that plausibility would be the main con-
tributing factor to the probability of a sentence being generated. However, LLM outputs are
known to be sensitive to diverse surface-level factors, most notably word frequency (e.g.,
Gong et al., 2018), which might overwhelm plausibility in determining the overall LLM score.
Thus, we conduct a series of analyses to examine the relative contributions of plausibility and
surface-level factors to the overall LLM score. As a control, we use human plausibility scores,
which we expect to be primarily determined by plausibility and not surface-level properties
of the stimulus.

3.3.1. Plausible and implausible score distributions in language models show substantial
overlap

As shown in Fig. 3A, human plausibility rating distributions for plausible and implausible
sentences in Dataset 1 show little overlap (mean difference for AI sentences = 0.78, AA sen-
tences = 0.38). In contrast, the distributions of likelihood scores assigned to plausible versus
implausible sentences under language models show significant overlap (mean difference for
LLMs: AI = 0.19, AA: 0.06; for baseline models: AI = 0.09, AA: 0.01). This suggests that
language model scores are determined predominantly by factors other than plausibility, such
as word frequency and sentence length.

3.3.2. Switching the agent and the patient strongly influences human plausibility judgments
but not LLM scores

Our plausibility manipulation (switching the agent and patient in a sentence) was specifi-
cally designed to alter the plausibility of the described event while preserving the identities of
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Fig. 3. Human plausibility rating and model probability score distributions. (A) Density plots for plausible and
implausible sentences. The dotted line shows the midpoint on the normalized score scale (0.5). (B) Correlation
plots for plausible and implausible sentences. Each dot represents a sentence score. The diagonal is an identity
line. Annotations show Pearson r correlation values and significance levels. See Fig. S1 for detailed analyses of
the score distributions for the baseline models.

individual words. If LLM scores depend on word-level properties (such as word frequency),
the correlation between the scores for the two versions should be positive.

As shown in Fig. 3B, human plausibility judgments show a negative correlation for plau-
sible and implausible versions of the same AI sentence (r = −.29, p<.001) and a nonsignif-
icant correlation for AA sentences (r = −.17, p = .06), indicating that word-level proper-
ties do not influence the average plausibility rating of a sentence pair. Conversely, under all
LLMs, sentence likelihood scores exhibit a strong positive correlation (ranging from 0.57 for
RoBERTa on AI sentences to 0.95 for BERT on AA sentences), indicating that LLM scores
are largely driven by individual word features, rather than by event plausibility. This trend is
more pronounced for AA than AI sentences, presumably due to a smaller relative contribution
of plausibility—a hypothesis we explore next.

3.3.3. Both plausibility and surface-level features predict LLM scores: Mixed effects
modeling

To systematically test how different factors contribute to individual sentence scores, we
fitted mixed effects models to likelihood scores from each model and to human plausibility
judgments (Table 4; see Methods for model and contrast definition). Because we normalize
the scores for each metric (humans and models), the resulting coefficients can be interpreted
as effect sizes.

As expected, human plausibility ratings are primarily driven by plausibility manipulations.
For plausibility, we consider two main contrasts: (a) implausible AI sentences (The laptop
bought the teacher) versus implausible AA sentences (The boy tutored the nanny) and (b)
implausible AA sentences versus plausible AA sentences (The nanny tutored the boy.). In
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humans, the effect of AI versus AA plausibility violation (−.37) is as strong as the implausi-
bility effect for AA sentences (−.38).

All LLMs are also sensitive to both plausibility effects when assigning string likelihood
scores; however, these effects are much weaker than the effects in human plausibility judg-
ments, and the implausible AI>implausible AA effect (−.13) is larger than the implausible
AA>plausible AA effect (−.07), consistent with the performance gap that we observed for
AI and AA sentences.

In addition, model probabilities but not human plausibility judgments are sensitive to the
main effects of surface-level sentence properties. Each LLM’s performance on the critical task
is affected by at least three of the following factors: voice, agent frequency, patient frequency,
average word frequency, and sentence length, whereas human plausibility judgments are not
affected by any of these features.

Finally, even in humans, the AI implausibility effect is modulated by some surface-level
properties. Compared to AA sentences, humans are likely to assign more polarized scores to
AI sentences presented in active voice than in passive voice (higher for plausible, lower for
implausible). GPT-2 and RoBERTa likelihood scores partially capture this effect, and BERT
shows an effect in the opposite direction, penalizing passive implausible AI sentences more
harshly. The best-performing LLM, MPT, fails to capture the fine-grained effects of surface-
level properties on human judgments.

Overall, the mixed-effects model analysis is consistent with other analyses. All LLMs show
a significant effect of plausibility on resulting sentence likelihood scores, indicating that they
are sensitive to generalized event knowledge. Yet, we still observe a performance gap between
AA and AI sentences and a strong effect of surface-level linguistic properties on LLM sen-
tence scores that diverge from those of human plausibility judgments, indicating that raw
probability of an event description cannot be used directly as an indicator of its plausibility.

3.4. LLMs generalize well across syntactic sentence variants, but only partially across
semantic sentence variants

In the previous section, we demonstrated that LLM sentence scores are strongly influenced
by surface-level sentence features, a factor that might negatively affect these models’ ability to
generalize. In this section, we directly tested how well LLM scores generalize across different
forms of a sentence. To do so, we evaluated the extent to which model scores generalize across
sentence voice (active vs. passive) and across sentences with synonymous, or closely related,
meanings.

3.4.1. LLMs generalize across active and passive sentences
To test invariance to sentence syntax, we calculated the Pearson correlations between the

active and passive voice versions of the same sentence (The teacher bought the laptop vs.
The laptop was bought by the teacher; Fig. 4A). Human scores were highly correlated (r
= .96, p<.001), indicating that human plausibility ratings are indeed invariant to sentence
voice. LLM likelihood scores were also strongly correlated (max: BERT, r = .93; min:
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Fig. 4. Generalization results. (A) Human and LLM scores for active voice and passive voice versions of the same
sentence (e.g., “The author finished the novel.” vs. “The novel was finished by the author.”). (B) Human and LLM
scores for sentences that have synonymous, or closely related, meanings (e.g., “The author finished the novel.” vs.
“The writer completed the book.”). Each dot represents a sentence score. The diagonal is an identity line. See Fig.
S2 for baseline model results.

GPT-J/GPT-2, r = .79; all p<.001), indicating that LLMs can successfully generalize across
active and passive voice forms of the same sentence.

3.4.2. LLMs show some generalization across synonymous sentences
To test invariance to specific lexical forms, we compared scores for sentence pairs where

subject, verb, and object words were synonymous, or closely related in meaning (The teacher
bought the laptop vs. The instructor purchased the computer; Fig. 4B). Human judgments
were highly correlated across synonymous sentence pairs (r = .90, p<.001), indicating that
they are largely invariant to specific word identity. LLMs showed some generalization (max:
MPT and RoBERTa, r = .56; min: BERT, r = .27; all p<.001), indicating that these models
are somewhat consistent in assigning scores to synonymous utterances, but this relationship is
far weaker than that observed in humans or than LLMs’ syntactic generalization capabilities.
This result is consistent with the results in Section 3.3.3, which showed that the models are
sensitive to lexical-item-level properties, such as word frequency, and presents a potential
challenge for robust representations of generalized event knowledge in LLMs.

3.5. LLM deviations from ground-truth labels are partially, but not fully explained by
plausibility violation strength

To understand the nature and severity of LLM errors, we conducted a quantitative and a
qualitative analysis of the sentence pairs that most LLMs got wrong.

We first tested whether the severity of the plausibility violation correlates with model per-
formance. To do so, we correlated the violation magnitude in each sentence pair (operational-
ized as the difference between human scores for plausible and implausible sentence versions)
and the number of LLMs (0 through 5) that correctly evaluated that sentence pair. For both
AI and AA sentences, we observed a moderate positive correlation, suggesting that sentence
pairs that are more difficult for humans to decide are also more challenging for LLMs.

Then, we conducted a qualitative analysis of sentence pairs that most LLMs got wrong
(Table 5). We found that these include several sentence pairs where human judgments actu-
ally deviated from ground truth labels (e.g., The orderly assisted the dentist vs. The dentist
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Fig. 5. Error analysis for Dataset 1. The number of LLMs (out of 5) which evaluated a given sentence pair correctly
correlates with the magnitude of the human score difference between plausible and implausible versions of that
sentence (the higher the difference, the better humans are at distinguishing plausible and implausible sentence
versions). Each dot is a minimal sentence pair; error bars denote standard errors of the mean. See Fig. S3 for
baseline model results. See Fig. S10 for the same analysis for Datasets 2 and 3.

assisted the orderly; see Table S4), but in two-thirds of the cases, there was at least a 0.1
difference between plausible and implausible sentence ratings in humans. Some errors might
be explained by low-level features of the input such as nonstandard spelling (e.g., tour-guide
instead of tour guide); some might be caused by low-frequency words (e.g., milliner) that
were underrepresented in the models’ training data; and some might reflect a failure to iden-
tify typical agent/patient roles (e.g., most LLMs fail to identify trainee as a typical patient
for the verb taught, even though human judgments in this example are rather unambiguous).
Overall, we conclude that (1) many of the models’ errors are “reasonable,” being caused
by ambiguous event plausibility labels and nonstandard spelling; (2) the knowledge gap for
unlikely (AA) sentences cannot be fully explained by such “reasonable” errors.

3.6. Internal representations of event plausibility generalize across sentences

The previous sections have investigated the behavioral performance of LLMs in distin-
guishing plausible and implausible events. Here, we ask: is the distinction between plausible
and implausible events encoded in the LLMs’ representational spaces? Can a linear classifier
trained to distinguish plausible and implausible events generalize to new sentences? If so, an
LLM may have learned to represent plausible and implausible events in systematically differ-
ent ways, a strategy that might help it to generalize in spite of its sensitivity to surface-level
properties.

We find that sentence plausibility is indeed linearly decodable from internal LLM represen-
tations (Fig. 5). Consistent with our main results (Section 3.1), impossible AI sentences have
a much stronger plausibility signature than unlikely AA sentences, with AI-to-AI classifier
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Fig. 6. Classification accuracies for linear probes trained to differentiate plausible from implausible event descrip-
tions in model embeddings. (A) Performance within an item type (animate-inanimate, AI, vs. animate-animate,
AA), active voice. (B) Generalization across item type, active voice. (C) Generalization across active and passive
voice. The dots denote classification accuracy of probes trained on human scores (which can serve as an empirical
ceiling value). Dotted lines indicate chance-level and ideal performance. Error bars show the standard error of the
mean across the 10 cross-validation folds.

performance reaching ceiling for late and, in some cases, middle model layers, whereas
AA-to-AA classifier performance on most LLM representations reaches above-chances
levels later and (except for certain middle layers in MPT) generally falls short of the ceiling
(Fig. 6A). The successful performance of both classifiers indicates that plausibility is one of
the organizing dimensions of the underlying distributional spaces for middle and late layers.

The fact that sentence representations of later model layers are more suitable for decod-
ing plausibility than those of earlier layers is consistent with previous results showing that
semantic information tends to be encoded more strongly in later layers (Belinkov et al., 2017;
Papadimitriou, Futrell, & Mahowald, 2022; Tenney, Das, & Pavlick, 2019). The trend we
observed in one of the models, MPT, where mid-layer performance exceeded late-layer per-
formance, should be examined further in other large (multi-billion parameter) models.

Next, we examined how well the plausibility signature generalizes across different sentence
types (AI vs. AA) and across different surface-level forms (active vs. passive).

Generalizing across sentence types is only partially successful. Generalizing to AA
sentences from AI sentences leads to a drop in classifier accuracy compared to testing an
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AI-trained classifier on AI sentences (Fig. 6B). In contrast, probes that are trained to distin-
guish plausible versus implausible AA sentences have similar performance on AI and AA test
sets, although they fall short of the probes trained and evaluated on sentence representations
from both sentence sets (labeled “all” in the figure).

Generalizing across sentence voice is possible given the right training regime. A classifier
trained and evaluated on all sentences (active and passive) performs as well as classifiers
trained and evaluated on sentences in only one voice (Fig. 6C), a result consistent with good
voice generalization performance in Section 4.4. However, active-to-passive and passive-to-
active classifiers perform substantially worse, with below-chance accuracy in early layers and
sometimes at-chance accuracy in late layers, indicating that these classifiers leverage surface-
level plausibility signatures that do not generalize across surface forms. Thus, LLM sentence
embeddings contain both syntax-specific and syntax-invariant plausibility information.

Overall, from the probing results, we conclude that event plausibility is linearly decodable
from LLM sentence embeddings. This plausibility information becomes salient in middle
LLM layers and remains high thereafter, making it possible to use this information during
output generation. Similar to the behavioral results, there is a performance gap between AI
and AA sentences, and the plausibility signature only partially generalizes across AI and AA
event types (although it can generalize across sentence voice).

For detailed statistical comparisons, see Tables S10 and S11. For extended probing results,
see Figs. S13 and S14; Table S12.

4. Discussion

Can generalized event knowledge emerge from distributional information encoded in
language? To find out, we compared the likelihood scores that pretrained LLMs assigned
to plausible versus implausible event descriptions. To minimize the putative influence of
confounding factors, we used syntactically simple, tightly controlled minimal pair sentences.
We demonstrate that LLMs acquire substantial event knowledge and improve over strong
baseline distributional models, especially when it comes to distinguishing possible and
impossible events (The teacher bought the laptop vs. The laptop bought the teacher). How-
ever, they are less consistent when assigning probabilities to likely events versus events that
are unlikely but not impossible (The nanny tutored the boy vs. The boy tutored the nanny).
Using three different sentence sets, we demonstrated that this gap in performance cannot be
fully explained by the animacy of the event participants or word frequency.

We further conducted a rigorous set of analyses to elucidate the relationship between an
LLM sentence score (which reflects its generation probability) and plausibility, showing that
LLM scores depend both on sentence plausibility and surface-level sentence properties. In
generalization analyses, we found that both LLM and human scores are consistent for active
and passive voice versions of the same sentence, but LLMs are less consistent than humans for
synonymous sentence forms. Lastly, we found that sentence plausibility is linearly decodable
from internal LLM representations, with the same gap between impossible and unlikely event
performance as that observed in behavioral tests. We conclude that sentence plausibility is a
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major contributor to sentence generation probability, although this relationship is less clear-
cut for likely versus unlikely event descriptions.

4.1. In case of impossible events, LLMs might leverage selectional restrictions

LLMs in our study were close to ceiling when distinguishing possible and impossible
events. A notable feature of the impossible event descriptions in our datasets is the violation
of selectional restrictions on the verb, that is, the set of semantic features that a verb requires
of its arguments (e.g., requiring an agent to be animate) (Chomsky, 1965; Katz & Fodor, 1963;
Levin, 1993). When plausibility violations were not driven by selectional restrictions (as in
the “unlikely” sentence sets), model performance dropped.

Our findings suggest that selectional restrictions are a linguistic property that is learnable
from corpus data (as also confirmed by the large number of experiments with computational
methods for selectional restriction acquisition from texts; e.g., Erk, 2007; Thrush, Wilcox, &
Levy, 2020) and whose violations are meaningfully distinct from violations of graded world
knowledge (Warren & McConnell, 2007; cf. Matsuki et al., 2011). Computational evidence
suggests that BERT models are able to generalize their knowledge of selectional restrictions
in novel word-learning paradigms (Thrush et al., 2020) and can partially rely on the seman-
tics of the head predicate to predict upcoming event participants (Metheniti, Van de Cruys, &
Hathout, 2020). The asymmetry in performance on possible/impossible versus likely/unlikely
events was independent from the specifics of LLM architecture and training and was addi-
tionally present, in an even more marked way, in our baseline models. Furthermore, a clas-
sifier probe trained on possible versus impossible sentence embeddings performed almost
perfectly on other sentences from the same category but failed to generalize to likely versus
unlikely events, indicating that selectional restrictions have a distinct representational sig-
nature. These results are consistent with psycholinguistic evidence from reading times and
Electroencephalography (EEG) indicating that violations of selectional restrictions and vio-
lations of world knowledge evoke distinct processing signatures (e.g., Paczynski & Kuper-
berg, 2012; Sitnikova, Holcomb, Kiyonaga, & Kuperberg, 2008; Warren, Milburn, Patson, &
Dickey, 2015; cf. Hagoort, Hald, Bastiaansen, & Petersson, 2004).

The fact that selectional restrictions are easier to learn from distributional linguistic data
than graded event likelihood is an important distinction, as both of these factors affect plau-
sibility judgments in humans (e.g., Hagoort et al., 2004; Warren et al., 2015). To verify and
extend our findings, future work should test LLMs’ knowledge of selectional restrictions on
features other than animacy, such as the physical constraints that a predicate places on its
patients (Wang, Durrett, & Erk, 2018), evaluate their performance on impossible events that
do not violate selectional restrictions per se (e.g., She gave birth to her mother, The man was
killed twice, or After 10 coin tosses, she got 12 heads.), and conduct more targeted tests of
agent-verb and patient-verb plausibility (Metheniti et al., 2020).

4.2. LLMs can infer thematic roles

The stimuli in Datasets 1 and 3 are constructed such that the model has to leverage word
order information to successfully determine event plausibility. LLMs successfully accomplish
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this task for most possible versus impossible events and for a number of likely versus unlikely
events. Furthermore, they produce highly correlated scores for active and passive versions of
the same sentence, suggesting that thematic role information generalizes beyond a specific
word order.

The probing results produce additional insight into the emergence of thematic role infor-
mation in the LLMs (Fig. 5B). A probe that is trained on a mix of active and passive sentences
performs as successfully as the probe trained and tested on only one voice type, suggesting
that plausible and implausible sentence embeddings in late LLM layers are linearly separable
by the same hyperplane across syntactic structures. This finding aligns with recent compu-
tational work showing that even though most sentences in the language input describe pro-
totypical events (Mahowald et al., 2023), LLMs are able to correctly represent the argument
structure of nonprototypical event descriptions in late layers (Papadimitriou et al., 2022).

Despite LLMs’ general success in thematic role inference, some confusion about thematic
role assignment might remain for unlikely events in our main dataset. These events describe
animate−animate (AA) interactions. Animate direct objects are treated as a special case in
many languages. In Spanish, for example, they are differentially marked with a preposition
(e.g., Aissen, 2003; Bossong, 1991). Even though English (the language that we test here)
does not overtly mark any direct objects, it could be that the correct thematic role assign-
ment remains ambiguous for AA sentences in a way that it does not for AI sentences. In
humans, this ambiguity can lead to a reinterpretation of the sentence as plausible even when
the word order indicates an implausible interpretation (e.g., Gibson, Bergen, & Piantadosi,
2013); a fine-tuned conversational LLM, ChatGPT-3.5, exhibited a similar bias (Cai et al.,
2023), suggesting that in LLMs, like in humans, plausibility priors might overrule thematic
role assignment.

4.3. The “reporting bias” in language corpora makes it harder to distinguish likely and
unlikely events

A core challenge for modeling plausibility based on linguistic input is the fact that the
frequency with which events are described in the language is not a reliable predictor of the
frequency with which events occur in the real world. Because much of our world knowledge
is shared across individuals (e.g., McRae et al., 2005) and human communication is shaped
by efficiency (Gibson et al., 2019) and cooperation (Grice, 1975), language is biased toward
reporting extraordinary facts and events rather than the trivial (Gordon & Van Durme, 2013).
Many commonsense facts about the world are thus presupposed rather than stated explicitly;
in contrast, unusual events are discussed extensively. As a result, likely events are underrep-
resented in linguistic corpora, whereas unlikely events are overrepresented.

The “reporting bias” of rare and newsworthy events in language corpora has traditionally
provided difficulty for modeling semantic knowledge via text mining (e.g., Lucy & Gauthier,
2017). Recent studies probing world knowledge in LLMs show that although the general-
ization capabilities of these models are able to overcome the reporting bias to some extent
(Shwartz & Choi, 2020; Weir, Poliak, & Van Durme, 2020), they still tend to reflect biases
that exist in their training corpus (Shwartz & Choi, 2020; Vig et al., 2020; Zmigrod, Mielke,
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Wallach, & Cotterell, 2019). As a result, one explanation of the performance gap that we
observe for likely versus unlikely events in LLMs could be that unlikely events are over-
represented in the corpus, leading the models to predict them as frequently as likely events.
In contrast, impossible events are nearly absent from the training data, and so the models
correctly assign them low likelihood scores.

It is worth noting that the reporting bias present in pragmatically influenced natural lan-
guage also affects concept learning in humans: blind people’s beliefs about the canonical
color of animals (Kim et al., 2019), for example, are consistent with the inadequate color
information encoded in sighted people’s linguistic productions (Ostarek et al., 2019). This,
along with the successful acquisition of many other visual concepts by the blind (e.g., Landau
& Gleitman, 1985; Marmor, 1978; Wang, Men, Gao, Caramazza, & Bi, 2020), implies that
learning from distributional linguistic information is a likely, though not the only, strategy
that humans adduce to organize facets of world knowledge, especially those to which they do
not have direct sensorimotor access.

A possible solution to overcoming the reporting bias would be to adjust the event dis-
tribution via injecting manually elicited knowledge about object and entity properties into
models (Wang et al., 2018; although see Porada, Suleman, Trischler, & Cheung, 2021) or via
data augmentation (e.g., Zmigrod et al., 2019). Alternatively, information about event typi-
cality might enter LLMs through input from different modalities, such as visual depictions
of the world in the form of large databases of images and/or image descriptions (Bisk et al.,
2020). Distributional models trained on multimodal data have indeed been shown to outper-
form text-only trained models in overcoming the reporting bias for visual concept knowledge
(e.g., Paik et al., 2021; Zhang et al., 2022). In the future, we plan to extend our analysis of
GEK to multimodal LLMs (e.g., CLIP; Radford et al., 2021) in order to investigate the role of
extralinguistic evidence, which might reduce the impact of the reporting bias and better simu-
late the multimodal information that humans use to acquire GEK. Finally, a training objective
that emphasizes robust, generalizable event representations might lead to more robust GEK
knowledge than word-in-context prediction, although what such an objective would look like
remains to be discovered.

4.4. Distributional language models are good models of language but imperfect models of
world knowledge

We have shown that the probability for generating a particular sentence under a given LLM
depends both on plausibility and on surface-level features of that sentence, such as word fre-
quency. This result is largely expected, because distributional models are naturally geared
toward producing more frequent tokens more often. However, it does result in a high overlap
between the score distributions we observe for plausible and implausible sentences, mean-
ing that many implausible sentences have higher likelihood generation simply because they
contain frequent words.

The fact that LLMs are sensitive to both sentence plausibility and surface-level features
makes them good candidate models of human language processing. On the one hand, sentence
plausibility substantially facilitates language processing in humans (e.g., Bicknell et al., 2010;
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Federmeier & Kutas, 1999; Kutas & Hillyard, 1984; McRae & Matsuki, 2009). On the other
hand, humans are also sensitive to lexical frequency effects when processing linguistic inputs
(e.g., Broadbent, 1967; Goodkind & Bicknell, 2021; Haeuser & Kray, 2022; Rayner & Duffy,
1986) and can use both linguistic knowledge and event knowledge in real time depending
on task demands (Willits, Amato, & MacDonald, 2015). As a result, LLM scores are a good
predictor of human reading times (Oh & Schuler, 2023; Oh, Clark, & Schuler, 2022; Shain
et al., 2022), neural predictability signatures like N400 (Michaelov, Bardolph, Van Petten,
Bergen, & Coulson, 2023; Szewczyk & Federmeier, 2022), and brain response patterns to
individual sentences (e.g., Caucheteux & King, 2022; Schrimpf et al., 2021; Tuckute et al.,
2023).

However, sensitivity to surface-level features of the input can make LLMs unreliable as
knowledge bases. Due to this sensitivity, they produce inconsistent results when the same
description is phrased differently (Elazar et al., 2021a; Ravichander et al., 2020; Ribeiro et al.,
2020), produce unsystematic judgments (Talmor, Elazar, Goldberg, & Berant, 2020), halluci-
nate facts (Ji et al., 2023; Liu et al., 2022), fail to learn commonsense event schemas (Pedinotti
et al., 2021), and generalize only weakly across synonymous descriptions of the same event
(Section 4.4). The ability to abstract away from specific inputs is a key feature of GEK; thus,
the ability of future language-based models to acquire robust, flexible event schemas will
depend crucially on their ability to generalize beyond corpus statistics.

Even though world knowledge and language processing behavior are closely linked in
humans, world knowledge and language are two fundamentally different capabilities that have
been shown to dissociate in humans (e.g., Caramazza, Berndt, & Brownell, 1982; Lambon
Ralph, Jefferies, Patterson, & Rogers, 2017; Patterson, Nestor, & Rogers, 2007), including in
a study that specifically evaluated event plausibility (Ivanova et al., 2021). We, therefore, spec-
ulate that the acquisition of robust, statistics-invariant world knowledge representations would
require a different objective function from that required for acquiring linguistic proficiency
(Mahowald et al., 2023). The word-in-context prediction objective, which enables LLMs to
excel at acquiring formal linguistic competence, encourages pretrained LLMs to organize
their semantic spaces mainly by relatively simple features such as similarity and association
(Lenci, 2023). This organization principle, however, does not always lead to robust concepts
and relations, which are useful for natural language understanding tasks and serve as impor-
tant units for developing more complex semantic structures (Lenci, 2023; Lenci & Sahlgren,
2023).

Based on our results and on studies from the literature, we conclude that the word-in-
context prediction objective alone is suitable for acquiring a wealth of event knowledge but
cannot ensure the consistency of these representations. Thus, in both humans and models, dis-
tributional linguistic knowledge is not a replacement for GEK but rather a useful foundation
for further enrichment and fine-tuning of generalized semantic representations.

4.5. Generating descriptions of unlikely events: A feature rather than a flaw?

The fact that LLMs’ distributional linguistic knowledge does not limit them to the realm of
plausible events could be considered a feature rather than a flaw. The power of language is not
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only in its ability to convey factual knowledge: language allows humans to brainstorm, fanta-
size, discuss counterfactuals, speculate, and dream. With enough backstory, even an impossi-
ble event like The laptop bought the teacher can be rendered plausible, eliminating the pro-
cessing difficulty in humans (e.g., Jouravlev et al., 2019; Nieuwland & Van Berkum, 2006;
Warren, McConnell, & Rayner, 2008) and in LLMs (Michaelov et al., 2022). Thus, restricting
the models to the realm of a priori plausible events would handicap their potential as models
of human language. Of course, in the absence of contextual information (as is the case in our
study), we would still expect LLMs to generate plausible event descriptions more often than
implausible ones. However, an overly strong alignment between an LLM and a knowledge
base will likely be counterproductive for its linguistic fluency.

Finally, a naïve approach to pretrained LLMs as knowledge bases overlooks their core
design feature: they are prediction machines that aim to faithfully mimic all properties of the
input, not simply semantic plausibility. As seen in Section 3.3, LLM scores are sensitive to
a variety of surface-level properties of the stimulus that need to be factored out to receive a
more faithful estimate of plausibility. Therefore, LLMs should be regarded at most only as
partial models of human semantic plausibility. In turn, if the goal is to directly compare LLM
scores with human scores, one should consider a human metric that is more appropriate, such
as reading times (Oh et al., 2022).

Prediction-based LLMs are an important tool for investigating which cognitive capacities
can, in principle, rely on distributional linguistic knowledge. Contemporary LLMs show that
large amounts of world knowledge can be learned from language alone with a simple word-
in-context prediction objective, yet controlled, targeted manipulations like the ones used in
this study can also highlight areas of knowledge where LLM behavior is not yet fully aligned
with human behavior. Future work should explore the extent to which LLMs master other
types of event knowledge, such as knowledge of typical/possible event sequences, knowledge
of impossible events that do not violate selectional restrictions per se, and the extent of their
sensitivity to selectional restrictions other than animacy. Furthermore, the fact that LLMs in
our study sometimes perform below humans even on syntactically simple sentences (The X
Ved the Y) suggests that testing them on longer sequences of text might uncover even larger
deviations from GEK. Overall, detailed investigations of world knowledge in distributional
language models are a valuable source of evidence for clarifying the relationship between
language and broader cognition.
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