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Abstract

We present here FANCY (FActivity, Nega-

tion, Common-sense, hYpernimy), a new

dataset with 4000 sentence pairs con-

cerning complex linguistic phenomena

such as factivity, negation, common-sense

knowledge, hypernymy and hyponymy.

The analysis is developed on two levels:

coarse-grained for the labels of the Natural

Language Inference (NLI), that is to say

the task of determining whether a hypoth-

esis is true (entailment), false (contradic-

tion), or undetermined (neutral) and fine-

grained for the linguistic features of each

phenomenon. For our experiments, we

analyzed the quality of the sentence em-

beddings generated from two transformer-

based neural models, BERT (Devlin et al.,

2018) and RoBERTa (Liu et al., 2019b),

that were fine-tuned on MNLI and were

tested on our dataset, using CBOW as a

baseline. The results obtained are lower

than the performance of the same models

on benchmarks like GLUE (Wang et al.,

2018) and SuperGLUE (Wang et al., 2019)

and allow us to understand which linguis-

tic features are the most difficult to under-

stand.

1 Introduction

Nowadays it has become more and more impor-

tant to understand how much neural models ap-

plied to Natural Language Processing can under-

stand about language features.

The probing task methodology is a simple but

effective approach to address this issue (Conneau

et al., 2018). A network is trained on a specific

Copyright © 2021 for this paper by its authors. Use per-
mitted under Creative Commons License Attribution 4.0 In-
ternational (CC BY 4.0).

task and then the representations are passed to

a classifier. The performance of the classifier is

evaluated with a dataset constructed to test the un-

derstanding of specific linguistic phenomena. If

the classifier performs well, then it can be deduced

that the neural embeddings have stored syntactic

and semantic knowledge relative to those specific

linguisitc phenomena.

One of the most widely used tasks for this ap-

proach is Natural Language Inference, in which

the model must decide whether a hypothesis is an

entailment, a contradiction, or simply neutral with

respect to the premise.

Another approach consists in using bench-

marks, i.e. datasets relating to various types of

tasks, which are able, on the basis of the results ob-

tained, to provide a general judgment on the per-

formance of the model. Although benchmarks are

very useful in evaluating the average performance

of models, they are less effective in representing a

wide range of linguistic phenomena that the mod-

els are able to deal with.

It is in this context that the challenge sets are

born, (also called adversarial sets, stress sets or

diagnostic sets) such as the SNLI (Stanford Nat-

ural Language Inference) (Bowman et al., 2015)

and the MultiNLI (Multi-genre Natural Language

Inference) (Williams et al., 2018). This datasets

provide the possibility of more specific evaluation

frameworks compared to traditional benchmarks

(Belinkov and Glass, 2019): as in the case of the

probing task, the aim is to evaluate the quality of

linguistic information encoded by vector represen-

tations.

For our research we built a diagnostic dataset

that addresses key aspects of the human knowl-

edge of lexical and compositional meaning, in or-

der to test the deep semantic abilities of the latest

computational models.

In this paper, we introduce FANCY, a dataset

with 4,000 different hand-annotated sentence pairs



288

with inference relation between them. In Sec-

tion 3 we will briefly present the linguistic phe-

nomena we decided to analyze. In Section 4 we

will present the methods of dataset construction

and in Section 5 we will discuss the results of the

experiments conducted on FANCY.

2 Related Work

Despite the progress made in recent years in the

study of vector representations, it is still difficult

to understand exactly what kind of linguistic prop-

erties they capture. The main approaches used in

this area are probing tasks and diagnostic datasets.

A probing task is a classification problem fo-

cused on the simple linguistic properties of sen-

tences (Conneau et al., 2018). This approach has

been used on a wide variety of linguistic phe-

nomena. The work of Ettinger (2016), for exam-

ple, focused on semantic role and negation scope:

the sentence embeddings used are Skip-Thought

(Kiros et al., 2015), Paragram (Le and Mikolov,

2014) and those obtained from the average of

GloVe word embeddings (Pennington et al., 2014).

Adi et al. (2016) verified whether sentence embed-

dings are able to encode information such as the

order, length and content of words in a sentence.

These elements were evaluated on sentence em-

bedding produced by CBOW (Continuous Bag-of-

Words) and Encoder-Decoder (ED) models, both

pre-trained on Wikipedia.

On the other hand, the importance of challenge

sets is demonstrated by the fact that some tradi-

tional benchmarks have been equipped, in addi-

tion to the standard datasets, with challenge sets

dedicated entirely to the NLI task. In fact, both

GLUE and SuperGLUE have a diagnostic dataset,

consisting of about 1000 pairs of manually con-

structed sentences involving 30 linguistic phenom-

ena, including anaphora, factivity, negation, re-

dundancy, hyponymy, etc. Similar challenge sets

have been developed and described in the publi-

cations of Naik et al. (2018), a dataset in which

the errors committed related to negation, anti-

nomies and numerical reasoning are also investi-

gated, Glockner et al. (2018), a challenge set cre-

ated with particular reference to common knowl-

edge and McCoy et al. (2019), an evaluation

dataset that contains 30,000 specific examples on

which neural models perform incorrect classifica-

tions, such as lexical overlap, subsequence, con-

stituent, etc.

3 Linguistic Phenomena

We selected four different kinds of linguistic phe-

nomena to analyze: (1) the factivity, which ad-

dress the truthfulness and the factuality of the

events mentioned inside the phrases, (2) the nega-

tion, which in the English language can be ex-

pressed by several terms and situations, (3) hierar-

chical relations, i.e. semantic relations like hyper-

nymy between a general term and a more specific

term, and (4) the common-sense knowledge, which

relates to the shared knowledge among speakers

about events and facts concerning the real world.

3.1 Factivity

Factivity is a linguistic phenomenon related to the

truthfulness of events or concepts that are men-

tioned and expressed in a sentence: each event,

based on the elements contained in the sentence,

can assume a certain degree of certainty.

a. John thinks it’s raining.

b. John knows it’s raining.

When a speaker reads the non-factive verb think

(a.), he understands that the event mentioned in the

sentence (it’s raining) is just a possibility, while he

deduces that it’s a fact when the factive verb know

is used (b.).

When we talk of situations and events that oc-

cur, have occurred or will surely occur in the

world, we present them as facts, while we usually

complete our tales using approximations in cases

where we do not know whether the things we are

talking about have actually happened and we are

not completely sure of their certainty. It is in this

context that we can observe the phenomenon of

factivity (Saurı́ and Pustejovsky, 2012).

3.2 Negation

Negation is a complex phenomenon that charac-

terize human language among all (Horn, 1989).

From a logical perspective, it is the opposite of af-

firmation, which means that the truth value of the

statement is reversed by the negative. The main

challenge is to identify the scope of the negative

marker within the sentence, i.e. which element

is semantically negated (Jackendoff, 1969). If we

consider a sentence such as Mary does not read

carefully, we can observe that the scope is partial,

because the negation refers only to the adverb. Be-

sides the most common not, nobody and nothing,

we have taken into account all possible negative

cases in the English language.
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Negation may be implicit, such as forget mean-

ing not remember, or affixal in such terms as il-

legal or dis-agreement. It could be related to

quantifiers, in cases such as not all veggies are

tasty which contradicts all veggies are not tasty.

Some sentences can occur with double negative

markers, such as John called neither his father

nor his mother. Moreover, we can observe con-

trastive negation (McCawley, 1991), in sentences

like John drank not coffee but tea. So, although

characteristic of all languages and frequently used,

negation is a complex phenomenon to investigate.

3.3 Hierarchical Relations

In many cases, the entailment relations can oc-

cur not only at a sentence level but also at a word

level, if we consider the meaning relations that ex-

ist between words: these kinds of relations are de-

fined as lexical entailment (Roller, 2017) and they

are determined for example by subtype/type hier-

archical relations such as hyponymy (dog is hy-

ponym of animal) and troponymy (run is troponym

of move) (Pustejovsky and Batiukova, 2019). We

define the subtype/type relation as entailment (dog

entails animal) and the type/subtype relation as

neutral (animal does not entail dog) (MacCartney

and Manning, 2009). However, the logical rela-

tions between lexical elements can be differently

projected by the properties (upward monotone,

downward monotone and non-monotone) of some

semantic functions (projectivity signatures) such

as restrictive quantifiers (some, any, every, etc.),

negation and superlative (MacCartney and Man-

ning, 2014). A function is upward monotone if

the logical relation between premise and hypothe-

sis is projected without change: the sentence some

parrots talk entails some birds talk. A function is

downward monotone if it reverses the logical rela-

tions between premise and hypothesis: no fish talk

entails no carp talk. A function is non-monotone

if it projects the logical relation between premise

and hypothesis as neutral: most humans talk does

not entail most animals talk (and vice-versa).

3.4 Common-Sense Knowledge

The concept of common-sense is hard to define

because it is strictly entangled with the way we

humans reason. Even though its definition is con-

troversial, we adopt here what Feldman called The

Standard View (Feldman, 2003). In his book he

defined eleven categories that give us an idea of the

things we know as human beings. He stated two

different thesis that constitute the Standard View:

the first one states that We know a large variety

of things in categories (a)-(k)1 and the second one

states that Our primary sources of knowledge are

(a)-(f)2.

Starting from the types suggested by LoBue and

Yates (2011), we grouped common-sense into five

macro-categories.

Causal Relations The categories in which the

statement of the premise causes the hypothesis

statement, e.g. the man had a bath entails the man

got wet: here we can see how the fact that the man

took a bath is the cause for him of being wet, hence

there is a Cause/Effect relation. At the same time

the fact that Mary was married to John automati-

cally implies John was married to Mary, therefore

the relation is of Simultaneous Condition.

Spatial Relations This category includes sen-

tences that specify the physical position of an

agent or an object with respect to someone or

something, e.g. the fact that John is inside his

home contradicts the sentence John is close to his

home because: in this case, the spatial prepositions

inside and close to cannot subsist at the same time.

Temporal Relations In this category are in-

cluded texts that specify the time of en event with

respect to someone or something, e.g. the fact that

Julius Caesar was assassinated in 44 B.C. implies

that Julius Caesar died before the birth of Christ.

In this example the reader is supposed to know that

B.C. indicates the birth of Christ, which is not triv-

ial.

World Knowledge Relations All the categories

that suppose a previous knowledge of the phenom-

enal or human world, for example all the sentences

that suppose a geographic knowledge to be cor-

rectly tagged, e.g. Charles Dickens is buried in

Westminster Abbey implies that Charles Dickens

rests in London only if we know that Westminster

is in London.

Other Relations In this set we put all the cate-

gories which are not included in the previous ones

(e.g., arithmetic relations and mutually exclusive

relations). For example, On the train, there are

340 passengers and 40 employees implies that On

the train, there are 380 people because we know

that if there are 340 + 40 people on the train then

the total of the people will be 380.

1The categories that we know, such as the past, morality,
science etc.

2He individuated six different sources of knowledge such
as perception, memory,reasoning etc.
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4 Dataset Construction

The dataset created for the experiments consists

in 4000 pairs of sentences that were built manu-

ally by the authors, and this is because we decided

to only include sentences that were as simple and

clear as possible, in order to specifically focus on

the linguistic features of the phenomena and to

exclude other external factors of complexity that

could have affected the performance of the neural

models. For the construction of FANCY, we fol-

lowed the diagnostic dataset schema provided with

the SuperGlue3 benchmark for models evaluation,

so all the data were inserted in a tabular framework

and tagged with the following columns and labels.

Premise and Hypothesis Are the first two

columns of the dataset and indicate which sen-

tence is the premise and which is the hypothesis.

FW and BW These two columns point out

which one of the sentences should be used as the

premise. For instance, if we find the sentence

Granada is in Spain as the premise, and Granada

is in Europe as the hypothesis in the database, the

column FW (forward) considers the first as the

premise and the second as the hypothesis while

the columns BW (backward) considers the second

sentence as the premise and the first as the hypoth-

esis. In both of the columns we inserted the cor-

rect output: in the example above, the column FW

would contain the tag entailment, because the first

sentence implies the second one, while the column

BW would contain the tag neutral because the sec-

ond sentence does not imply the first one but does

not contradict that either.

Phenomenon Category This column is very

important for this study because it specifies which

kind of feature regarding a particular phenomenon

is represented by the sentence pairs.

Phenomenon E N C

Factivity 239 465 296
Negation 410 428 158
Hierarchical 369 475 156
Common-sense 388 254 358

Table 1: Distribution of Entailment (E), Neutral (N) and
Contradiction (C) labels.

In Table 1 we can see that FANCY is composed

of 1406 pairs of sentences that lead to an entail-

ment, 1622 sets of neutral sentences and 968 con-

tradictions.

3https://super.gluebenchmark.com/diagnostics

5 Experiments

In this section, we report the results of the exper-

iments conducted using our dataset FANCY. We

tested state-of-the-art models for NLI on the four

different linguistic phenomena in the dataset. We

selected bert-base-uncased-MNLI and roberta-

large-mnli, both of which were finetuned on the

MNLI dataset, and also a baseline model based

on CBOW. The BERT and RoBERTa models are

based on the Transformer architecture and are

available on the Hugging Face web page.4 For

what concerns the CBOW model, it was built us-

ing the tensorflow library,5 with the word embed-

dings generated by GloVe pretrained with 840 Bil-

lions tokens, a vocabulary of 2.2 millions cased

words and the resulting word vectors with 300 di-

mensions.6 The model was then trained on the

MultiNLI dataset, so that all three models were

trained on the same data.

Set BERT RoBERTa CBOW

MNLI 84.6 90.2 65.2
Factivity 65.2 74.6 45.1
Negation 70.0 82.0 45.0
Hierarchical 49.7 60.4 37.8
Common-sense 57.0 68.0 41.0

Table 2: Accuracies report.

We tested every model on the examples of

FANCY. The results in Table 5 show how the mod-

els struggled to address these kind of phenomena,

if compared with the results on the MNLI. We

can see that the baseline model performed quite

poorly on all the subsets of our data. RoBERTa

is the best performing one, even though it showed

poor performances on linguistic phenomena such

as common-sense and hierarchical relations while

performing better on factivity and negations.

Label Error Tot %

Possibly Fact 257 416 62
Possibly Counterfact 8 50 16
Fact 27 244 11
Counterfact 32 290 11

Table 3: RoBERTa errors on factivity relations.

In Table 3 we can see the errors that RoBERTa

made in labeling examples regarding factivity.

Most of the errors concern examples where the hy-

pothesis gave place to a Possible fact and therefore

should be tagged as neutral.

4https://huggingface.co/
5https://www.tensorflow.org/
6https://nlp.stanford.edu/projects/glove/
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Premise Hypothesis Gold Pred.

The man was born in 1950. The man was 18 in 1968. E C

No arrow hit the target. Not all arrows hit the target. C E

Bob believes that Twin Peaks Twin Peaks is the best tv N E

is the best tv show ever. show ever.

All seagulls fly. All birds fly. N E

Table 4: Error examples. The column Gold contains the correct tags, while the column Predicted contains the incorrect tags
predicted by RoBERTa.

Label Errors Tot %

Negation 116 568 62
Implicit Negation 30 146 16
Contrastive Negation 19 179 10
Partial Negation 16 32 8
Affixal Negation 5 75 3

Table 5: RoBERTa errors on negation relations.

In Table 5 it is evident that the largest number

of errors belongs to the Negation macro-category.

In this case, the sentences contained elements such

as quantifiers, modals, temporal adverbs and rela-

tive pronouns. Therefore, it appears that the com-

prehension of negation is more difficult when it is

related to these elements.

Label Errors Tot %

Downward Monotone 189 222 48
Upward Monotone 25 138 6
Non-Monotone 62 98 16

Table 6: RoBERTa errors on hierarchical relations.

In Table 6 we can see the errors made by the

RoBERTa in dealing with hierarchical relation-

ships. Most errors relate to Downward Monotone

and Non-Monotone sentences.

Label Errors Tot %

Temporal Relation 64 182 19.94
Preconditions 53 146 16.51
World Knowledge 26 60 8.10
Spatial Relation 45 148 14.02
Cause/Effect 24 74 7.48

Table 7: RoBERTa errors on common-sense relations.

In Table 7 we show only the most relevant

categories for what concerns the errors commit-

ted by the model dealing with common-sense and

common-knowledge.

As we can see, Temporal Relation, Precondi-

tions and Spatial Relation are the most difficult

categories for the model to label correctly.

As illustrative examples, in Table 4 are four sen-

tences mislabelled by RoBERTa. We note that the

sentences are very simple and easy for human be-

ings to understand.

6 Conclusions

Following a large number of recent studies (Naik

et al., 2018), (Glockner et al., 2018), (Belinkov

et al., 2019), (Liu et al., 2019a), we also tried to

investigate whether the latest neural models were

able to understand certain linguistic phenomena.

On the one hand, we wanted to test the models on

the real understanding of the English language, on

the other hand, we wanted to build a fine-grained

dataset, which allows a detailed analysis of each

phenomenon. We tested two of the the most high-

performance models such as BERT and RoBERTa

and we observed how they struggle dealing with

linguistic features that are quite simple to under-

stand for a human being.

We have shown how the models can better han-

dle phenomena such as factivity and negation if

compared with the results obtained on hierarchi-

cal relation and common-sense knowledge. More

in particular, we were able to stress how the state-

of-the-art models struggle in dealing with linguis-

tic phenomena that are essential for a correct un-

derstanding of the language such as the possi-

bility generated by a statement, temporal rela-

tions between entities, the negation when there

is a presence of temporal adverbs and relative

pronouns and cases of downward monotone sen-

tences. In future developments of our work we

could use FANCY in order to perform fine tun-

ing on Transformer-based models with the aim of

increasing model performance and inferential ca-

pabilities. To do this it would be useful to produce

more data, possibly annotated by different people,

to test the models developed on different types of

natural language. At the same time, the dataset

could be implemented with other languages, such

as Italian.
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