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Abstract

We propose an approach to corpus-based
semantics, inspired by cognitive science,
in which different semantic tasks are tack-
led using the same underlying reposi-
tory of distributional information, col-
lected once and for all from the source
corpus. Task-specific semantic spaces are
then built on demand from the repository.
A straightforward implementation of our
proposal achieves state-of-the-art perfor-
mance on a number of unrelated tasks.

1 Introduction

Corpus-derived distributional semantic spaces
have proved valuable in tackling a variety of tasks,
ranging from concept categorization to relation ex-
traction to many others (Sahlgren, 2006; Turney,
2006; Padó and Lapata, 2007). The typical ap-
proach in the field has been a “local” one, in which
each semantic task (or set of closely related tasks)
is treated as a separate problem, that requires its
own corpus-derived model and algorithms. Its
successes notwithstanding, the “one task – one
model” approach has also some drawbacks.

From a cognitive angle, corpus-based models
hold promise as simulations of how humans ac-
quire and use conceptual and linguistic informa-
tion from their environment (Landauer and Du-
mais, 1997). However, the common view in cog-
nitive (neuro)science is that humans resort to a
multipurpose semantic memory, i.e., a database
of interconnected concepts and properties (Rogers
and McClelland, 2004), adapting the information
stored there to the task at hand. From an engineer-
ing perspective, going back to the corpus to train a
different model for each application is inefficient
and it runs the risk of overfitting the model to a
specific task, while losing sight of its adaptivity – a
highly desirable feature for any intelligent system.

Think, by contrast, of WordNet, a single network
of semantic information that has been adapted to
all sorts of tasks, many of them certainly not en-
visaged by the resource creators.

In this paper, we explore a different approach
to corpus-based semantics. Our model consists
of a distributional semantic memory – a graph of
weighted links between concepts - built once and
for all from our source corpus. Starting from the
tuples that can be extracted from this graph, we
derive multiple semantic spaces to solve a wide
range of tasks that exemplify various strands of
corpus-based semantic research: measuring se-
mantic similarity between concepts, concept cate-
gorization, selectional preferences, analogy of re-
lations between concept pairs, finding pairs that
instantiate a target relation and spotting an alterna-
tion in verb argument structure. Given a graph like
the one in Figure 1 below, adaptation to all these
tasks (and many others) can be reduced to two ba-
sic operations: 1) building semantic spaces, as co-
occurrence matrices defined by choosing different
units of the graph as row and column elements;
2) measuring similarity in the resulting matrix ei-
ther between specific rows or between a row and
an average of rows whose elements share a certain
property.

After reviewing some of the most closely re-
lated work (Section 2), we introduce our approach
(Section 3) and, in Section 4, we proceed to test
it in various tasks, showing that its performance is
always comparable to that of task-specific meth-
ods. Section 5 draws the current conclusions and
discusses future directions.

2 Related work

Turney (2008) recently advocated the need for a
uniform approach to corpus-based semantic tasks.
Turney recasts a number of semantic challenges in
terms of relational or analogical similarity. Thus,
if an algorithm is able to tackle the latter, it can
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also be used to address the former. Turney tests his
system in a variety of tasks, obtaining good results
across the board. His approach amounts to pick-
ing a task (analogy recognition) and reinterpreting
other tasks as its particular instances. Conversely,
we assume that each task may keep its speci-
ficity, and unification is achieved by designing a
sufficiently general distributional structure, from
which semantic spaces can be generated on de-
mand. Currently, the only task we share with Tur-
ney is finding SAT analogies, where his method
outperforms ours by a large margin (cf. Section
4.2.1). However, Turney uses a corpus that is
25 times larger than ours, and introduces nega-
tive training examples, whereas we dependency-
parse our corpus – thus, performance is not di-
rectly comparable. Besides the fact that our ap-
proach does not require labeled training data like
Turney’s one, it provides, we believe, a more intu-
itive measure of taxonomic similarity (taxonomic
neighbours are concepts that share similar con-
texts, rather than concepts that co-occur with pat-
terns indicating a taxonomic relation), and it is
better suited to model productive semantic phe-
nomena, such as the selectional preferences of
verbs with respect to unseen arguments (eating
topinambur vs. eating ideas). Such tasks will re-
quire an extension of the current framework of
Turney (2008) beyond evidence from the direct co-
occurrence of target word pairs.

While our unified framework is, as far as we
know, novel, the specific ways in which we tackle
the different tasks are standard. Concept similar-
ity is often measured by vectors of co-occurrence
with context words that are typed with dependency
information (Lin, 1998; Curran and Moens, 2002).
Our approach to selectional preference is nearly
identical to the one of Padó et al. (2007). We
solve SAT analogies with a simplified version of
the method of Turney (2006). Detecting whether
a pair expresses a target relation by looking at
shared connector patterns with model pairs is a
common strategy in relation extraction (Pantel and
Pennacchiotti, 2008). Finally, our method to de-
tect verb slot similarity is analogous to the “slot
overlap” of Joanis et al. (2008) and others. Since
we aim at a unified approach, the lack of origi-
nality of our task-specific methods should be re-
garded as a positive fact: our general framework
can naturally reproduce, locally, well-tried ad-hoc
solutions.

3 Distributional semantic memory

Many different, apparently unrelated, semantic
tasks resort to the same underlying information,
a “distributional semantic memory” consisting of
weighted concept+link+concept tuples extracted
from the corpus. The concepts in the tuples are
typically content words. The link contains corpus-
derived information about how the two words are
connected in context: it could be for example a
dependency path or a shallow lexico-syntactic pat-
tern. Finally, the weight typically derives from co-
occurrence counts for the elements in a tuple, re-
scaled via entropy, mutual information or similar
measures. The way in which the tuples are iden-
tified and weighted when populating the memory
is, of course, of fundamental importance to the
quality of the resulting models. However, once
the memory has been populated, it can be used to
tackle many different tasks, without ever having to
go back to the source corpus.

Our approach can be compared with the typical
organization of databases, in which multiple alter-
native “views” can be obtained from the same un-
derlying data structure, to answer different infor-
mation needs. The data structure is virtually inde-
pendent from the way in which it is accessed. Sim-
ilarly, the structure of our repository only obeys
to the distributional constraints extracted from the
corpus, and it is independent from the ways it will
be “queried” to address a specific semantic task.
Different tasks can simply be defined by how we
split the tuples from the repository into row and
column elements of a matrix whose cells are filled
by the corresponding weights. Each of these de-
rived matrices represents a particular view of dis-
tributional memory: we will discuss some of these
views, and the tasks they are appropriate for, in
Section 4.

Concretely, we used here the web-derived, 2-
billion word ukWaC corpus,1 dependency-parsed
with MINIPAR.2 Focusing for now on modeling
noun-to-noun and noun-to-verb connections, we
selected the 20,000 most frequent nouns and 5,000
most frequent verbs as target concepts (minus stop
lists of very frequent items). We selected as tar-
get links the top 30 most frequent direct verb-
noun dependency paths (e.g., kill+obj+victim),
the top 30 preposition-mediated noun-to-noun or

1http://wacky.sslmit.unibo.it
2http://www.cs.ualberta.ca/˜lindek/

minipar.htm
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Figure 1: A fragment of distributional memory

verb-to-noun paths (e.g., soldier+with+gun) and
the top 50 transitive-verb-mediated noun-to-noun
paths (e.g., soldier+use+gun). We extracted all
tuples in which a target link connected two target
concepts. We computed the weight (strength of
association) for all the tuples extracted in this way
using the local MI measure (Evert, 2005), that is
theoretically justified, easy to compute for triples
and robust against overestimation of rare events.
Tuples with local MI ≤ 0 were discarded. For
each preserved tuple c1+ l+c2, we added a same-
weight c1 + l−1 + c2 tuple. In graph-theoretical
terms (treating concepts as nodes and labeling the
weighted edges with links), this means that, for
each edge directed from c1 to c2, there is an edge
from c2 to c1 with the same weight and inverse
label, and that such inverse edges constitute the
full set of links directed from c2 to c1. The re-
sulting database (DM, for Distributional Memory)
contains about 69 million tuples. Figure 1 de-
picts a fragment of DM represented as a graph (as-
sume, for what we just said, that for each edge
from x to y there is a same-weight edge from y
to x with inverse label: e.g., the obj link from
kill to victim stands for the tuples kill+obj+victim
and victim+obj−1+kill, both with weight 915.4;
subj in identifies the subjects of intransitive con-
structions, as in The victim died; subj tr refers to
the subjects of transitive sentences, as in The po-
liceman killed the victim).

We also trained 3 closely comparable models
that use the same source corpus, the same tar-
get concepts (in one case, also the same target
links) and local MI as weighting method, with the
same filtering threshold. The myPlain model im-
plements a classic “flat” co-occurrence approach
(Sahlgren, 2006) in which we keep track of verb-
to-noun co-occurrence within a window that can

include, maximally, one intervening noun, and
noun-to-noun co-occurrence with no more than
2 intervening nouns. The myHAL model uses
the same co-occurrence window, but, like HAL
(Lund and Burgess, 1996), treats left and right co-
occurrences as distinct features. Finally, myDV
uses the same dependency-based target links of
DM as filters. Like in the DV model of Padó
and Lapata (2007), only pairs connected by target
links are preserved, but the links themselves are
not part of the model. Since none of these alter-
native models stores information about the links,
they are only appropriate for the concept similar-
ity tasks, where links are not necessary.

4 Semantic views and experiments

We now look at three views of the DM
graph: concept-by-link+concept (CxLC),
concept+concept-by-link (CCxL), and
concept+link-by-concept (CLxC). Each view
will be tested on one or more semantic tasks and
compared with alternative models. There is a
fourth possible view, links-by-concept+concept
(LxCC), that is not explored here, but would lead
to meaningful semantic tasks (finding links that
express similar semantic relations).

4.1 The CxLC semantic space

Much work in computational linguistics and re-
lated fields relies on measuring similarity among
words/concepts in terms of their patterns of co-
occurrence with other words/concepts (Sahlgren,
2006). For this purpose, we arrange the informa-
tion from the graph in a matrix where the concepts
(nodes) of interest are rows, and the nodes they
are connected to by outgoing edges are columns,
typed with the corresponding edge label. We re-
fer to this view as the concept-by-link+concept

3



(CxLC) semantic space. From the graph in Fig-
ure 1, we can for example construct the matrix
in Table 1 (here and below, showing only some
rows and columns of interest). By comparing the
row vectors of such matrix using standard geo-
metrical techniques (e.g., measuring the normal-
ized cosine distance), we can find out about con-
cepts that tend to share similar properties, i.e., are
taxonomically similar (synonyms, antonyms, co-
hyponyms), e.g., soldiers and policemen, that both
kill, are killed and use guns.

subj in−1subj tr−1 obj−1 with use
die kill kill gun gun

teacher 109.4 0.0 9.9 0.0 0.0
victim 1335.2 22.4 915.4 0.0 0.0
soldier 4547.5 1306.9 8948.3 105.9 41.0
policeman 68.6 38.2 538.1 30.5 7.4

Table 1: A fragment of the CxLC space

We use the CxLC space in three taxonomic sim-
ilarity tasks: modeling semantic similarity judg-
ments, noun categorization and verb selectional
restrictions.

4.1.1 Human similarity ratings
We use the dataset of Rubenstein and Goode-
nough (1965), consisting of 65 noun pairs rated
by 51 subjects on a 0-4 similarity scale (e.g. car-
automobile 3.9, cord-smile 0.0). The average rat-
ing for each pair is taken as an estimate of the
perceived similarity between the two words. Fol-
lowing Padó and Lapata (2007), we use Pearson’s
r to evaluate how the distances (cosines) in the
CxLC space between the nouns in each pair cor-
relate with the ratings. Percentage correlations for
DM, our other models and the best absolute re-
sult obtained by Padó and Lapata (DV+), as well
as their best cosine-based performance (cosDV+),
are reported in Table 2.

model r model r

myDV 70 DV+ 62
DM 64 myHAL 61
myPlain 63 cosDV+ 47

Table 2: Correlation with similarity ratings

DM is the second-best model, outperformed
only by DV when the latter is trained on compara-
ble data (myDV in Table 2). Notice that, here and
below, we did not try any parameter tuning (e.g.,
using a similarity measure different than cosine,
feature selection, etc.) to improve the performance
of DM.

4.1.2 Noun categorization
We use the concrete noun dataset of the ESSLLI
2008 Distributional Semantics shared task,3 in-
cluding 44 concrete nouns to be clustered into cog-
nitively justified categories of increasing general-
ity: 6-way (birds, ground animals, fruits, greens,
tools and vehicles), 3-way (animals, plants and
artifacts) and 2-way (natural and artificial enti-
ties). Following the task guidelines, we clustered
the target row vectors in the CxLX matrix with
CLUTO,4 using its default settings, and evalu-
ated the resulting clusters in terms of cluster-size-
weighted averages of purity and entropy (see the
CLUTO documentation). An ideal solution would
have 100% purity and 0% entropy. Table 3 pro-
vides percentage results for our models as well as
for the ESSLLI systems that reported all the rel-
evant performance measures, indexed by first au-
thor. Models are ranked by a global score given by
summing the 3 purity values and subtracting the 3
entropies.

model 6-way 3-way 2-way global
P E P E P E

Katrenko 89 13 100 0 80 59 197
Peirsman+ 82 23 84 34 86 55 140
DM 77 24 79 38 59 97 56
myDV 80 28 75 51 61 95 42
myHAL 75 27 68 51 68 89 44
Peirsman− 73 28 71 54 61 96 27
myPlain 70 31 68 60 59 97 9
Shaoul 41 77 52 84 55 93 -106

Table 3: Concrete noun categorization

DM outperforms our models trained on com-
parable resources. Katrenko’s system queries
Google for patterns that cue the category of a con-
cept, and thus its performance should rather be
seen as an upper bound for distributional models.
Peirsman and colleagues report results based on
different parameter settings: DM’s performance
– not tuned to the task – is worse than their top
model, but better than their worse.

4.1.3 Selectional restrictions
In this task we test the ability of the CxLC space to
predict verbal selectional restrictions. We use the
CxLC matrix to compare a concept to a “proto-
type” constructed by averaging a set of other con-
cepts, that in this case represent typical fillers of

3http://wordspace.collocations.de/
doku.php/esslli:start

4http://glaros.dtc.umn.edu/gkhome/
cluto/cluto/overview
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a verbal slot – for example, by averaging the vec-
tors of the nouns that are, according to the underly-
ing graph, objects of killing, we can build a vector
for the typical “killee”, and model selectional re-
strictions by measuring the similarity of other con-
cepts (including concepts that have not been seen
as objects of killing in the corpus) to this proto-
type. Note that the DM graph is used both to find
the concepts to enter in the prototype (the set of
nouns that are connected to a verb by the relevant
edge) and to compute similarity. Thus, the method
is fully unsupervised.

We test on the two datasets of human judgments
about the plausibility of nouns as arguments (ei-
ther subjects or objects) of verbs used in Padó et
al. (2007), one (McRae) consisting of 100 noun-
verb pairs rated by 36 subjects, the second (Padó)
with 211 pairs rated by 20 subjects. For each verb
in these datasets, we built its prototypical sub-
ject/object argument vector by summing the nor-
malized vectors of the 50 nouns with the highest
weight on the appropriate dependency link to the
verb (e.g., the top 50 nouns connected to kill by an
obj link). The cosine distance of a noun to a proto-
type is taken as the model “plausibility judgment”
about the noun occurring as the relevant verb ar-
gument. Since we are interested in generalization,
if the target noun is in the prototype set we sub-
tract its vector from the prototype before calculat-
ing the cosine. For our comparison models, there
is no way to determine which nouns would form
the prototype, and thus we train them using the
same top noun lists we employ for DM. Following
Padó and colleagues, performance is measured by
the Spearman ρ correlation coefficient between the
average human ratings and the model predictions.
Table 4 reports percentage coverage and correla-
tions for our models as well as those in Padó et
al. (2007) (ParCos is the best among their purely
corpus-based systems).

model McRae Padó
coverage ρ coverage ρ

Padó 56 41 97 51
DM 96 28 98 50
ParCos 91 21 98 48
myDV 96 21 98 39
myHAL 96 12 98 29
myPlain 96 12 98 27
Resnik 94 3 98 24

Table 4: Correlation with verb-argument plausibil-
ity judgments

DM does very well on this task: its performance
on the Padó dataset is comparable to that of the
Padó system, that relies on FrameNet. DM has
nearly identical performance to the latter on the
Padó dataset. On the McRae data, DM has a lower
correlation, but much higher coverage. Since we
are using a larger corpus than Padó et al. (2007),
who train on the BNC, a fairer comparison might
be the one with our alternative models, that are all
outperformed by DM by a large margin.

4.2 The CCxL semantic space

Another view of the DM graph is exemplified in
Table 5, where concept pairs are represented in
terms of the edge labels (links) connecting them.
Importantly, this matrix contains the same infor-
mation that was used to build the CxLC space
of Table 1, with a different arrangement of what
goes in the rows and in the columns, but the same
weights in the cells – compare, for example, the
soldier+gun-by-with cell in Table 5 to the soldier-
by-with+gun cell in Table 1.

in at with use
teacher school 11894.47020.1 28.9 0.0
teacher handbook 2.5 0.0 3.2 10.1
soldier gun 2.8 10.3 105.9 41.0

Table 5: A fragment of the CCxL space

We use this space to measure “relational” sim-
ilarity (Turney, 2006) of concept pairs, e.g., find-
ing that the relation between teachers and hand-
books is more similar to the one between soldiers
and guns, than to the one between teachers and
schools. We also extend relational similarity to
prototypes. Given some example pairs instantiat-
ing a relation, we can harvest new pairs linked by
the same relation by computing the average CCxL
vector of the examples, and finding the nearest
neighbours to this average. In the case at hand,
the link profile of pairs such as soldier+gun and
teacher+handbook could be used to build an “in-
strument relation” prototype.

We test the CCxL semantic space on recogniz-
ing SAT analogies (relational similarity between
pairs) and semantic relation classification (rela-
tional similarity to prototypes).

4.2.1 Recognizing SAT analogies
We used the set of 374 multiple-choice ques-
tions from the SAT college entrance exam. Each
question includes one target pair, usually called
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the stem (ostrich-bird) , and 5 other pairs (lion-
cat, goose-flock, ewe-sheep, cub-bear, primate-
monkey). The task is to choose the pair most anal-
ogous to the stem. Each SAT pair can be rep-
resented by the corresponding row vector in the
CCxL matrix, and we select the pair with the high-
est cosine to the stem. In Table 6 we report our
results, together with the state-of-the-art from the
ACL wiki5 and the scores of Turney (2008) (Pair-
Class) and from Amaç Herdaǧdelen’s PairSpace
system, that was trained on ukWaC. The Attr cells
summarize the performance of the 6 models on the
wiki table that are based on “attributional similar-
ity” only (Turney, 2006). For the other systems,
see the references on the wiki. Since our coverage
is very low (44% of the stems), in order to make a
meaningful comparison with the other models, we
calculated a corrected score (DM−). Having full
access to the results of the ukWaC-trained, simi-
larly performing PairSpace system, we calculated
the adjusted score by assuming that the DM-to-
PairSpace error ratio (estimated on the items we
cover) is constant on the whole dataset, and thus
the DM hit count on the unseen items is approx-
imated by multiplying the PairSpace hit count on
the same items by the error ratio (DM+ is DM’s
accuracy on the covered test items only).

model % correct model % correct
LRA 56.1 KnowBest 43.0
PERT 53.3 DM− 42.3
PairClass 52.1 LSA 42.0
VSM 47.1 AttrMax 35.0
DM+ 45.3 AttrAvg 31.0
PairSpace 44.9 AttrMin 27.3
k-means 44.0 Random 20.0

Table 6: Accuracy with SAT analogies

DM does not excel in this task, but its corrected
performance is well above chance and that of all
the attributional models, and comparable to that of
a WordNet-based system (KnowBest) and a sys-
tem that uses manually crafted information about
analogy domains (LSA). All systems with perfor-
mance above DM+ (and k-means) use corpora that
are orders of magnitude larger than ukWaC.

4.2.2 Classifying semantic relations
We also tested the CCxL space on the 7
semantic relations between nominals adopted
in Task 4 of SEMEVAL 2007 (Girju et

5http://www.aclweb.org/aclwiki/index.
php?title=SAT_Analogy_Questions

al., 2007): Cause-Effect, Instrument-Agency,
Product-Producer, Origin-Entity, Theme-Tool,
Part-Whole, Content-Container. For each rela-
tion, the dataset includes 140 training examples
and about 80 test cases. Each example consists
of a small context retrieved from the Web, con-
taining word pairs connected by a certain pattern
(e..g., “* contains *”). The retrieved contexts were
manually classified by the SEMEVAL organizers
as positive (e.g., wrist-arm) or negative (e.g., ef-
fectiveness-magnesium) instances of a certain re-
lation (e.g., Part-Whole). About 50% training and
test cases are positive instances. For each rela-
tion, we built “hit” and “miss” prototype vectors,
by averaging across the vectors of the positive and
negative training pairs attested in our CCxL model
(we use only the word pairs, not the surround-
ing contexts). A test pair is classified as a hit
for a certain relation if it is closer to the hit pro-
totype vector for that relation than to the corre-
sponding miss prototype. We used the SEMEVAL
2007 evaluation method, i.e., precision, recall, F-
measure and accuracy, macroaveraged over all re-
lations, as reported in Table 7. The DM+ scores
ignore the 32% pairs not in our CCxL space; the
DM− scores assume random performance on such
pairs. These scores give the range within which
our performance will lie once we introduce tech-
niques to deal with unseen pairs. We also report
results of the SEMEVAL systems that did not use
the organizer-provided WordNet sense labels nor
information about the query used to retrieve the
examples, as well as performance of several trivial
classifiers, also from the SEMEVAL task descrip-
tion.

model precision recall F accuracy
UCD-FC 66.1 66.7 64.8 66.0
UCB 62.7 63.0 62.7 65.4
ILK 60.5 69.5 63.8 63.5
DM+ 60.3 62.6 61.1 63.3
UMELB-B 61.5 55.7 57.8 62.7
SemeEval avg 59.2 58.7 58.0 61.1
DM− 56.7 58.2 57.1 59.0
UTH 56.1 57.1 55.9 58.8
majority 81.3 42.9 30.8 57.0
probmatch 48.5 48.5 48.5 51.7
UC3M 48.2 40.3 43.1 49.9
alltrue 48.5 100.0 64.8 48.5

Table 7: SEMEVAL relation classification

The DM accuracy is higher than the three SE-
MEVAL baselines (majority, probmatch and all-
true), DM+ is above the average performance of
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the comparable SEMEVAL models. Differently
from DM, the models that outperform it use fea-
tures extracted from the training contexts and/or
specific additional resources: an annotated com-
pound database for UCD-FC, machine learning
algorithms to train the relation classifiers (ILK,
UCD-FC), Web counts (UCB), etc. The less than
optimal performance by DM is thus counterbal-
anced by its higher “parsimony” and generality.

4.3 The CLxC semantic space
A third view of the information in the DM graph
is the concept+link-by-concept (CLxC) semantic
space exemplified by the matrix in Table 8.

teacher victim soldier policeman
kill subj tr 0.0 22.4 1306.9 38.2
kill obj 9.9 915.4 8948.3 538.1
die subj in 109.4 1335.2 4547.5 68.6

Table 8: A fragment of the CLxC space

This view captures patterns of similarity be-
tween (surface approximations to) argument slots
of predicative words. We can thus use the CLxC
space to extract generalizations about the inner
structure of lexico-semantic representations of the
sort formal semanticists have traditionally being
interested in. In the example, the patterns of
co-occurrence suggest that objects of killing are
rather similar to subjects of dying, hinting at the
classic cause(subj,die(obj)) analysis of killing by
Dowty (1977) and many others. Again, no new in-
formation has been introduced – the matrix in Ta-
ble 8 is yet another re-organization of the data in
our graph (compare, for example, the die+subj in-
by-teacher cell of this matrix with the teacher-by-
subj in+die cell in Table 1).

4.3.1 The causative/inchoative alternation
Syntactic alterations (Levin, 1993) represent
a key aspect of the complex constraints that
shape the syntax-semantics interface. One of
the most important cases of alternation is the
causative/inchoative, in which the object argu-
ment (e.g., John broke the vase) can also be re-
alized as an intransitive subject (e.g., The vase
broke). Verbs differ with respect to the possi-
ble syntactic alternations they can participate in,
and this variation is strongly dependent on their
semantic properties (e.g. semantic roles, event
type, etc.). For instance, while break can undergo
the causative/inchoative alternation, mince cannot:
cf. John minced the meat and *The meat minced.

We test our CLxC semantic space on the
discrimination between transitive verbs un-
dergoing the causative-inchoative alterna-
tions and non-alternating ones. We took
232 causative/inchoative verbs and 170 non-
alternating transitive verbs from Levin (1993).
For each verb vi, we extracted from the CLxC
matrix the row vectors corresponding to its tran-
sitive subject (vi + subj tr), intransitive subject
(vi + subj in), and direct object (vi + obj) slots.
Given the definition of the causative/inchoative
alternation, we predict that with alternating verbs
vi + subj in should be similar to vi + obj
(the things that are broken also break), while
this should not hold for non-alternating verbs
(mincees are very different from mincers).

Our model is completely successful in detect-
ing the distinction. The cosine similarity between
transitive subject and object slots is fairly low for
both classes, as one would expect (medians of 0.16
for alternating verbs and 0.11 for non-alternating
verbs). On the other hand, while for the non-
alternating verbs the median cosine similarity be-
tween the intransitive subject and object slots is
a similarly low 0.09, for the alternating verbs the
median similarity between these slots jump up
to 0.31. Paired t-tests confirm that the per-verb
difference between transitive subject vs. object
cosines and intransitive subject vs. object cosines
is highly statistically significant for the alternating
verbs, but not for the non-alternating ones.

5 Conclusion

We proposed an approach to semantic tasks where
statistics are collected only once from the source
corpus and stored as a set of weighted con-
cept+link+concept tuples (naturally represented
as a graph). Different semantic spaces are con-
structed on demand from this underlying “distri-
butional memory”, to tackle different tasks with-
out going back to the corpus. We have shown that
a straightforward implementation of this approach
leads to excellent performance in various taxo-
nomic similarity tasks, and to performance that,
while not outstanding, is at least reasonable on re-
lational similarity. We also obtained good results
in a task (detecting the causative/inchoative alter-
nation) that goes beyond classic NLP applications
and more in the direction of theoretical semantics.

The most pressing issue we plan to address is
how to improve performance in the relational sim-
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ilarity tasks. Fortunately, some shortcomings of
our current model are obvious and easy to fix.
The low coverage is in part due to the fact that
our set of target concepts does not contain, by de-
sign, some words present in the task sets. More-
over, while our framework does not allow ad-hoc
optimization of corpus-collection methods for dif-
ferent tasks, the way in which the information in
the memory graph is adapted to tasks should of
course go beyond the nearly baseline approaches
we adopted here. In particular, we need to de-
velop a backoff strategy for unseen pairs in the
relational similarity tasks, that, following Turney
(2006), could be based on constructing surrogate
pairs of taxonomically similar words found in the
CxLC space.

Other tasks should also be explored. Here, we
viewed our distributional memory in line with how
cognitive scientists look at the semantic memory
of healthy adults, i.e., as an essentially stable long
term knowledge repository. However, much in-
teresting semantic action takes place when under-
lying knowledge is adapted to context. We plan
to explore how contextual effects can be modeled
in our framework, focusing in particular on how
composition affects word meaning (Erk and Padó,
2008). Similarity could be measured directly on
the underlying graph, by relying on graph-based
similarity algorithms – an elegant approach that
would lead us to an even more unitary view of
what distributional semantic memory is and what
it does. Alternatively, DM could be represented as
a three-mode tensor in the framework of Turney
(2007), enabling smoothing operations analogous
to singular value decomposition.
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his results, Katrin Erk for making us look at DM as
a graph, and the reviewers for helpful comments.

References
J. Curran and M. Moens. 2002. Improvements in auto-

matic thesaurus extraction. Proceedings of the ACL
Workshop on Unsupervised Lexical Acquisition, 59–
66.

D. Dowty. 1977. Word meaning and Montague Gram-
mar. Kluwer, Dordrecht.
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