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Previous research in computational linguistics dedicated a lot of e�ort to using

language modeling and/or distributional semantic models to predict metrics

extracted from eye-tracking data. However, it is not clear whether the two

components have a distinct contribution, with recent studies claiming that surprisal

scores estimated with large-scale, deep learning-based language models subsume

the semantic relatedness component. In our study, we propose a regression

experiment for estimating di�erent eye-tracking metrics on two English corpora,

contrasting the quality of the predictions with and without the surprisal and the

relatedness components. Di�erent types of relatedness scores derived from both

static and contextual models have also been tested. Our results suggest that both

components play a role in the prediction, with semantic relatedness surprisingly

contributing also to the prediction of function words. Moreover, they show that when

the metric is computed with the contextual embeddings of the BERT model, it is able

to explain a higher amount of variance.

KEYWORDS

cognitive modeling, surprisal, semantic relatedness, cosine similarity, language models,
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1. Introduction

Eye-tracking data recorded during reading provide important evidence about the factors

influencing language comprehension (Rayner et al., 1989; Rayner, 1998). In the investigation of

potential predictors of human reading patterns, cognitive studies have focused their attention on

two specific factors, among the others: (i) the semantic coherence of a word with the rest of the

sentence (Ehrlich and Rayner, 1981; Pynte et al., 2008; Mitchell et al., 2010), which is typically

assessed via semantic relatednessmetrics (usually the cosine) computed with distributional word

embeddings, and (ii) the predictability of the word from its previous context, as measured by

surprisal (Hale, 2001; Levy, 2008). Initially, the two factors were considered separately, and the

general idea was that words having low semantic coherence and low in-context predictability

(i.e., high surprisal) induce longer reading times. This hypothesis was instead questioned by

Frank (2017), who argued that previous findings had to be attributed to a confound between

semantic relatedness and word predictability and that the effect of the former disappeared once

surprisal was factored out.

Our work aims at providing further evidence about the complex interplay between semantic

relatedness and surprisal as predictors of eye-tracking data. For example, it is unclear whether

the fact that no independent effect of relatedness has been found depends on the specific word

embedding model being used for measuring it. In fact, there is a large variety of Distributional

Semantic Models (DSMs) that are trained with different objectives, and they have been shown to

perform differently depending on the task (Lenci et al., 2022). Moreover, the recent introduction

of contextual embedding models such as ELMo (Peters et al., 2018) and BERT (Devlin et al.,

2019) has also radically changed the way semantic relatedness can be assessed. In particular,
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contextual embeddings now make it possible to compare the

semantic representations of words in specific contexts (token-level

representations), and not just type-level representations that tend to

conflate multiple senses of the same word.

The goals of this paper can thus be summarized as follows:

1. Investigating whether distributional measures of semantic

relatedness between a word and its previous contexts are indeed

made redundant by surprisal, or have instead an autonomous

explanatory role to model eye-tracking data;

2. Looking into different types of word embeddings, to check

whether “classical” static models and contextual ones interact

differently or not with surprisal.

To explore these issues, we implemented four different

linear models to predict three eye-tracking features on two

eye-tracking corpora: i) a baseline with word-level features,

ii) a model with baseline features and the surprisal between

target word and context, iii) a model with baseline features

and the relatedness between the vector representing the target

word and the vector representing the context, and iv) a

model with all the above-mentioned regression features. While

surprisal has been consistently computed using a state-of-the-

art neural language model GPT2-xl (Radford et al., 2019),

the vectors employed in the cosine similarity calculation were

obtained using either SGNS (Mikolov et al., 2013) or BERT

(Devlin et al., 2019), to compare static and contextual word

embedding models.

Our results show that the models including both relatedness

and surprisal perform better than the other three, suggesting that,

despite the overlap between the two, they contribute differently in

explaining the variance in the data. Furthermore, when comparing

the models using only relatedness, we noticed that BERT vectors

outperform SGNS ones, confirming the added value of contextual

embeddings when modeling the relatedness of words in contexts.

Finally, we investigated how our models predict eye-tracking feature

values for different parts of speech, and we found that while

surprisal helps on content words, semantic relatedness contributes

to improving the predictions on both function and content

words.

2. Computational models of human
reading times: Surprisal and semantic
relatedness

Since the cognitive processes of meaning construction involve

the integration of individual word meanings into the syntactic and

semantic context, the literature in natural language processing and

cognitive science got interested in how such contextual effects on

word fixations could be modeled. A first class of computational

models has relied on distributional semantics to assess the relatedness

of a word with its wider semantic context (Section 2.1); another

class of models has explored the connection between the logarithmic

probabilities of words in context and their processing difficulty

(Section 2.2).

2.1. Computational measures for semantic
coherence

A fruitful line of research has been investigating the usage of

cosine similarity between word embeddings for predicting reading

times. The employment of word vectors for modeling reading times

originated from classical DSMs (Lenci and Sahlgren, 2023). Pynte

et al. (2008) and Mitchell et al. (2010) used the semantic distance

between a target word and the context as a predictor, measured as

1 min the traditional cosine similarity metric (Turney and Pantel,

2010; Lenci, 2018). The context was in turn modeled as the sum of

the distributional vectors representing the words before the target.

These studies found strong correlations between semantic distance

and reading times: The more semantically related the words, the

shorter the fixation durations.

Originally, vector spaces were obtained from the extraction and

counting (hence the name of count models) of the co-occurrences

between the target words and the relevant linguistic contexts.

Raw co-occurrences were usually weighted via different types

of statistical association measures [e.g., Mutual Information, log-

likelihood; see Evert (2005) for an overview] and then the vector

space was optionally transformed with some algebraic operation for

dimensionality reduction, such as Singular Value Decomposition

(Landauer and Dumais, 1997; Bullinaria and Levy, 2012). The

contexts could consist either in the words occurring within a window

surrounding the target (Lund and Burgess, 1996; Sahlgren, 2008), or

in the words linked to the target by syntactic (Padó and Lapata, 2007;

Baroni and Lenci, 2010) or semantic relations (Sayeed et al., 2015).

Later, with the increasing success of deep learning techniques in

Natural Language Processing, the so-called predict models established

themselves as a new standard (Mikolov et al., 2013; Bojanowski et al.,

2017). In suchmodels, the learning of word vectors is based on neural

network training and framed as a self-supervised language modeling

task. One of the most popular predict DSMs is Word2Vec (Mikolov

et al., 2013), which includes two main architectures: CBOW, trained

for predicting a target word given the context surrounding it, and

Skip-Gram, whose learning objective is to predict the surrounding

context given a target word. The most common implementation of

Skip-Gram makes use of negative sampling (SGNS), whose objective

is to discriminate between word sequences that are actually occurring

in the data (positive samples) and "corrupted" samples, which are

obtained by randomly replacing a word in a true sequence from the

corpus (negative samples).

One of the main limitations of “traditional” word embeddings,

both count and predict ones, is that they provide static

representations of the semantics of a word. They assign a single

embedding to each word type, thereby conflating the possible senses

of a lexeme and hampering the possibility to address the pervasive

phenomena of polysemy and homography. For example, bank as a

financial agency will have the same vector representation of bank

as the bank of the river. This way, lexical semantic representations

are built at the type level only, and the embedding will be a sort of

distributional summary of all the instances of a word, no matter

how different their senses might be (and probably, the most frequent

senses would obscure the minority ones).

The most recent generation of DSMs is said to be contextual

because they produce a distinct vector for each word instance in

context, that is a token level representation(Peters et al., 2018; Devlin
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et al., 2019; Liu et al., 2019). Contextual DSMs generally rely on a

multi-encoder network and the word vectors are learned as a function

of the internal states, so that a word appearing in different sentence

contexts determines different activation states and, as a consequence,

is represented by a different vector.

Most contextual DSMs are based on Transformers (Vaswani et al.,

2017), which use a self-attention mechanism (Bahdanau et al., 2014)

for getting the most salient elements in a sentence context and assign

them higher weights. BERT (Devlin et al., 2019) is probably the most

popular model for generating contextual word representations. BERT

is trained on amasked languagemodeling objective function: random

words in the input sentences are replaced by a ‘[MASK]’ token

and the model attempts to predict the masked word based on the

surrounding context. Simultaneously, BERT is optimized on a next

sentence prediction task, as the model receives sentence pairs in input

and has to predict whether the second sentence is subsequent to the

first one in the training data. It should be noticed that BERT is defined

as deeply bidirectional as, in fact, it takes into account the left-hand

and the right-hand context of a word to predict the word filling the

masked token. The contextual embeddings produced by BERT have

been shown to improve the state-of-the-art performance in several

Natural Language Processing tasks (Devlin et al., 2019) and it has

been reported that its multilingual versions (i.e., Multilingual BERT,

XLM) are able to predict human fixations in multiple languages

(Hollenstein et al., 2021, 2022a,b). Significantly, it was shown that

it is possible to extract semantic representations at the type level

from BERT just by averaging token vectors of randomly-sampled

sentences, and those can achieve a performance close to traditional

word embeddings on word similarity tasks (Bommasani et al., 2020;

Chronis and Erk, 2020; Lenci et al., 2022) and on word association

modeling (Rodriguez and Merlo, 2020).

2.2. Computational measures for word
predictability

A significant part of the psycholinguistic and computational

studies modeled naturalistic reading data by means of language

model probabilities, being inspired by surprisal theory (Hale, 2001,

2016), with the idea that the predictability of a word is the main factor

determining the reading times. More specifically, the processing

difficulty of a word is considered to be proportional to its surprisal,

that is, the negative logarithm of the probability of the word given the

context. Several studies based on language models adopted surprisal

theory as a reference framework for the prediction of eye-tracking

data (Demberg and Keller, 2008; Frank and Bod, 2011; Fossum

and Levy, 2012; Monsalve et al., 2012; Smith and Levy, 2013). The

predictions were typically evaluated on the Dundee Corpus (Kennedy

et al., 2003), as one of the earliest corpora with gold standard

annotations of eye-tracking measures.

Later research has focused on the quality of the language model

to estimate conditional probabilities, finding that models with lower

perplexity are a better fit to human reading times (Goodkind and

Bicknell, 2018). Following studies confirmed the model perplexity as

a significant determinant, making use of more and more advanced

neural architectures, such as LSTM (van Schijndel and Linzen, 2018),

GRU (Aurnhammer and Frank, 2019), Transformers (Merkx and

Frank, 2021), GPT-2 (Wilcox et al., 2020).

Is contextual predictability, that is surprisal, all we need to

model human reading behavior? Some recent results suggest that

this may not be the case. Goodkind and Bicknell (2021), for

example, investigated the role played on local word statistics, such

as word bigram and trigram probability, in sentence processing,

and consequently their impact on reading times, finding that they

affect processing independently of surprisal. Moreover, Hofmann

et al. (2021) compared different models for computing surprisal

as predictors of eye-tracking fixations and found that they explain

different and independent proportions of variance in the viewing

parameters. For example, classical n-gram-based languagemodels are

better at predicting metrics related to short-range access, while RNN

models better predict the early preprocessing of the next word.

The models of the GPT family are based on Transformer

architectures (Radford et al., 2018, 2019; Brown et al., 2020).

Differently from BERT, GPT is a uni-directional, autoregressive

Transformer languagemodel, whichmeans that the training objective

is to predict the next word, given all of the previous words. GPT-2, in

particular, has been commonly used in eye-tracking studies, as the

surprisal scores computed by this language model have been proved

to be strong predictors of reading times and eye fixations in English

(Hao et al., 2020; Wilcox et al., 2020; Merkx and Frank, 2021) and

in other languages (e.g., Dutch, German, Hindi, Chinese, Russian)

(Salicchi et al., 2022).

The research work on semantic relatedness and surprisal led

Frank (2017) to ask whether these two factors have actually

independent effects in the modeling of reading times. The question

was motivated by the fact that not all the studies on reading times

found effects associated with semantic relatedness (e.g., Traxler et al.,

2000; Gordon et al., 2006), although vector space metrics clearly

proved to be useful for modeling other types of experimental data on

naturalistic reading, such as the N400 amplitude in EEG recordings

(Frank and Willems, 2017). Frank suggested that, since DSMs like

Word2Vec (Mikolov et al., 2013) are based on word co-occurrence

and are optimized for predicting words in context, previous results

were due to a confound between semantic relatedness and word

predictability. Indeed, when surprisal was factored out, the author

showed that the semantic distance effects disappeared. Moreover, the

different results obtained in modeling the N400 component in the

EEG data were attributed to differences in the stimuli presentation

method: while in eye-tracking participants read the text naturally, in

many EEG studies words are presented one at a time with unnaturally

long durations. Following the findings of Wlotko and Federmeier

(2015) and Frank (2017) pointed out that, the more natural the

presentation rates of the words in the experimental setting in EEG,

the smaller the semantic relatedness effects on N400 data tend to be,

with no effects at all for behavioral metrics on naturalistic reading.

Is distributional semantic relatedness really made redundant by

surprisal, or were the results by Frank (2017) also conditioned by the

specific type of embeddings used in the experiments? The analyzes in

Sections 3, 4 aim at clarifying this issue.

3. Materials and methods

3.1. Definition of eye-tracking metrics in
psycholinguistic studies

Several metrics have been defined to describe eye movement

features (Rayner, 1998). In this work, we focus on first fixation
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duration, number of fixations and total reading time. The first fixation

duration (FFD), that is the time spent fixing a word for the first time,

is typically associated with lexical information processing, like lexical

access (Inhoff, 1984), which is heavily affected by word frequency

(Balota and Chumbley, 1984). Fast word recognition is obtained

when a word can be recognized with a single glance. In this sense,

a short FFD reflects a quick and successful lexical access (Hofmann

et al., 2021).

However, several words may not be accessed immediately. Words

may receive multiple fixations before the eyes move to the next word,

and this is reflected by the number of fixations (NF), depending on

the integration of the word within the sentence semantics or syntax

(Frazier and Rayner, 1982). An alternative metric for this “delayed”

lexical access is known as gaze duration, which computes directly the

sum of the duration of individual fixations before moving to the next

word (Inhoff and Radach, 1998; Rayner, 1998).

Finally, the total reading time (TRT), as the sum of all fixation

durations on the word, including regressions, is affected by both

lexical and sentence-level processing. The TRT is likely to indicate

the time required for the full semantic integration of the word in the

sentence context (Radach and Kennedy, 2013).

What are the factors affecting word fixations during reading?

There is a general consensus that word position, word length, and the

number of syllables within the word affect language processing and,

consequently, reading behavior and fixations (Just and Carpenter,

1980). It has also been observed that low-frequency words tend to

have longer gaze durations and, additionally, they lead to longer

gaze on the immediately following words, a phenomenon typically

referred to as spillover effect (Rayner and Duffy, 1986; Rayner et al.,

1989; Remington et al., 2018). A common explanation is that rare

and longer words have a higher cognitive load, as they require more

time for the semantic integration in the sentence context (Pollatsek

et al., 2008), and therefore they may influence the processing of the

following words.

3.2. Eye-tracking corpora

Traditional corpora annotated with eye-tracking data consist

of short isolated sentences (or even single words) with particular

structures or lexemes, in order to investigate specific syntactic

and semantic phenomena. In the present work, we use GECO

(Cop et al., 2017) and Provo (Luke and Christianson, 2018),

two eye-tracking corpora containing long, complete, and coherent

texts.

GECO is a bilingual corpus in English and Dutch

composed of the entire Agatha Christie’s novel The Mysterious

Affair at Styles. The corpus is freely downloadable with a

related dataset containing eye-tracking data of 33 subjects

(19 of them bilingual, 14 English monolingual) reading

the full novel text, presented paragraph-by-paragraph

on a screen1. In total, GECO is composed of 54,364

tokens.

Provo contains 55 short English texts about various topics, with

2.5 sentences and 50 words on average, for a total of 2, 689 tokens,

and a vocabulary of 1,197 words. These texts were read by 84 native

1 https://expsy.ugent.be/downloads/geco/

TABLE 1 Summary of the linear models implemented for the experiments.
m

Model name Features

BL Word frequency

Word length

Word position within the sentence

Previous word frequency

Previous word length

Whether or not the previous word was fixated

BL-cos Baseline features (same as BL)

Cosine similarity (BERT vectors)

Baseline features (same as BL)

Cosine similarity (SGNS vectors)

BL-sur Baseline features (same as BL)

Surprisal (GPT2-xl)

BL-sur-cos Baseline features (same as BL)

Surprisal (GPT2-xl)

Cosine similarity (SGNS vectors)

Baseline features (same as BL)

Surprisal (GPT2-xl)

Cosine similarity (BERT vectors)

English speakers and their eye-tracking measures were collected and

made publicly available online2.

GECO and Provo are particularly interesting for our goals

because they are corpora of naturalistic reading since data have been

recorded from subjects reading real texts, instead of short stimuli

created in vitro. For every word in the corpora, we extracted the mean

total reading time, mean first fixation duration, and mean number of

fixations. Mean values were obtained by averaging over the subjects.

The choice of modeling mean eye-tracking measures is justified by

the high inter-subject consistency of the recorded data.

3.3. Method

We implemented and compared four main types of linear models

(see Table 1):

1. A baseline model with word-related statistics that are known to

influence sentence and word processing (i.e., word frequency,

word length, word position within the sentence, previous word

frequency, previous word length, and whether or not the previous

word was fixated);

2. Two models combining baseline features and cosine similarity,

one using Skip-Gram vectors (SGNS), one using BERT vectors;

3. One model with baseline features + surprisal computed using

GPT2-xl;

4. Two models with baseline features + surprisal computed using

GPT2-xl + cosine similarity, one using SGNS vectors, one using

BERT vectors.

Recent works have cast doubts on the application of cosine in

similarity task while employing contextual vector models. In fact, in

contextual embeddings a small number of dimensions (e.g., 3-5) tend

to dominate the similarity metric, accounting for most of the data

variance (Timkey and van Schijndel, 2021). Moreover, it has been

shown that the removal of the outlier dimensions leads to drastic

2 https://osf.io/sjefs/
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performance drops both in language modeling and in downstream

tasks (Kovaleva et al., 2021).

To address this issue, for similarity tasks it has been suggested to

correct the comparisons by discounting the “rogue” dimensions or to

adopt metrics based on the rank of the dimensions themselves, rather

than on their absolute values (Timkey and van Schijndel, 2021). In

order to take into account the potential effect of rogue dimensions

on computing cosine similarity with BERT, we followed the latter

suggestion and we also implemented two further models, in which

we use Spearman correlation instead of cosine similarity.

Rank-based metrics have been reported to outperform vector

cosine in semantic relatedness tasks (Santus et al., 2016a,b, 2018;

Zhelezniak et al., 2019), and it has been shown that Spearman itself is

more correlated with human judgments than cosine (Timkey and van

Schijndel, 2021). For each of the resulting eight models, the values to

be predicted were first fixation duration (FFD), number of fixations

(NF) and total reading time (TRT). We predicted those metrics on

both GECO and Provo corpus. We also experimented with models

with and without interactions between the features. The models were

implemented using the generalized linear models available in R,

which have also been used for the statistical analysis.

After we fitted the data of the eye-tracking features with each

model, we compared them using the corrected Akaike Information

Criterion (AICc) in order to determine the extent to which the

goodness of fit improves with the addition of semantic relatedness

and surprisal as predictors. Additionally, we also analyzed i) the

correlations between linear model errors (as Mean Absolute Error,

MAE) and word features, and ii) which parts of speech are easier or

harder for each model to predict.

3.4. Regression features

3.4.1. Baseline features
The baseline model includes the following word features: i) the

target word and previous word length, computed as the number

of letters within the word to be predicted; ii) the target word

and previous word frequency, whose values are extracted from

Wikipedia;3 iii) the target word position, as the index of the word

within the current sentence; iv) a Boolean value corresponding to 1

if the word preceding the target word was fixated, 0 otherwise. The

baseline features are the same used by Frank (2017).

3.4.2. Metrics of semantic relatedness
To compute the semantic relatedness between the context and

the target word, we extracted vectors for each word, represented the

sentence context with a vector, and finally computed, alternatively,

the cosine similarity or the Spearman correlation between the context

and the target vectors (the latter metric was used only with the BERT

vectors only).

With SGNS embeddings, we extracted the pre-trained vectors for

each word, and we computed the context vector using an additive

model: We summed the vectors of all the words preceding the

3 The Wikipedia frequencies were extracted from https://github.com/

IlyaSemenov/wikipedia-word-frequency

target and took this as the context representation. For example,

given the sentence The dog chases the cat, if the target word is

chases, the context vector will be
−→
The +

−→
dog, while if the target

word is cat, the context vector will be
−→
The +

−→
dog +

−−−→
chases +

−→
the.

On the other hand, given the bidirectional nature of the BERT

language model, the input to extract the embeddings from this

model required a special preprocessing, since we wanted to avoid the

model to “see the future,” by having the target word vector including

information also from the right-hand context. Therefore, we fed

BERT with sub-sentences. For instance, given the sentence The dog

chases the cat, we generated the following sub-sentences:

S[0] = [The]

S[1] = [The dog]

S[2] = [The dog chases]

S[3] = [The dog chases the]

S[4] = [The dog chases the cat]

For each target word, we extracted its vector, when the lexeme

occurs at the end of a sub-sentence (e.g., The will be extracted in S[0],

dog in S[1], chases in S[2], and so on).

Regarding the context, we used the vector of the special token

[CLS], which is created by BERT as a global representation of

the input sentence, taking into account how salient each word

is for the sentence’s meaning. Again, to avoid a representation

of the target word itself within the [CLS] vector, we computed

the cosine similarity and the Spearman correlation between the

target word embedding, and the [CLS] vector of the previous sub-

sentence. For example, if cat is the target word, we computed

the cosine similarity between
−→
cat from S[4] and

−−−−→
CLSS[3]. In order

to find the optimal layer for the computation of the similarity

scores, we extracted vectors from all the 24 layers of BERT Large

and computed the Spearman correlations with each one of the

target features.

The results can be seen in Figure 1. Consistently

with the findings of Salicchi et al. (2021), the layers

with the highest absolute correlation values are the

ones immediately before the last one. We chose layer

22 as the one with the highest inverse correlation to

our data.

3.4.3. Surprisal
To model the influence of word predictability on eye-

tracking measures, we included in the regression models the

surprisal of the target words given their previous context. For

each target word we computed the surprisal as the negative

logarithm of its probability given all the words preceding the

target:

surprisal(wn) = − log P(wn|w0,w1, ...,wn−1) (1)

The probability P is computed by GPT2-xl, the largest publicly

available version of GPT-2. Similarly to the original model,

GPT2-xl was also trained on the WebText corpus (40 GB

of text data), but it has a larger architecture (48 layers, for

a total of 1542M parameters) and was shown to have the
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FIGURE 1

Spearman correlations between TRT (dot line), FFD (square), and NF (triangle) and the cosine similarity using vectors produced by di�erent layers of BERT

Large, on GECO (left) and Provo (right). Layer 24, whose values are systematically higher than the average, is intentionally left out for plot reading

purposes.

TABLE 2 Average AICc, and AICc for TRT, FFD, and NF on GECO with SGNS vectors.

Avg TRT FFD NF

Model AICc Delta AICc Delta AICc Delta AICc Delta

BL-sur-cos 60,286 0 88,611 0 80,296 0 11,951 0

BL-sur 60,492 206 88,835 224 80,576 280 12,065 115

BL-cos 60,982 696 89,409 798 80,903 607 12,634 683

BL 61,466 1,180 89,948 1,337 81,483 1,186 12,969 1,018

TABLE 3 Average AICc, and AICc for TRT, FFD, and NF on GECO with BERT vectors.

Avg TRT FFD NF

Model AICc Delta AICc Delta AICc Delta AICc Delta

BL-sur-cos 59,566 0 87,758 0 79,232 0 11,709 0

BL-cos 60,151 585 88,413 654 79,697 465 12,346 637

BL-sur-Spearman 60,467 901 88,803 1,045 80,538 1,307 12,060 350

BL-sur 60,492 926 88,835 1,077 80,576 1,345 12,065 356

BL-Spearman 61,430 1,864 89,902 2,145 81,432 2,200 12,957 1,247

BL 61,466 1,900 89,948 2,190 81,483 2,251 12,969 1,259

lowest perplexity on the evaluation corpora of Radford et al.

(2019).

4. Results and discussion

4.1. General analysis

4.1.1. Cosine similarity vs. Spearman correlation
We first checked whether Spearman correlation was a better

similarity metric than cosine with BERT contextual embeddings.

Therefore, we compared BL-cos and BL-Spearman, namely models

with baseline features and the similarity metric only, and we

compared BL-sur-cos and BL-sur-Spearman, which are the models

using baseline features, surprisal, and the similarity metric. The AICc

values reported in Tables 2–5 clearly show that cosine similarity is a

better predictor of eye-tracking features than Spearman correlation:

on GECO, the difference between BL-cos and BL-Spearman is 1,279,

and between BL-sur-cos and BL-sur-Spearman is 901; on Provo

the differences are 333 and 318, respectively. Given these results,

we henceforth focus our analyzes only on cosine similarity and

its relationship with surprisal. Our findings suggest that, within

the linear models we propose, BERT embeddings anisotropy does

not affect the eye movements modeling, and therefore, cosine

similarity is a suitable feature to be used for this eye tracking feature

prediction task.

4.1.2. Linear models comparison
For each implemented model, we used AICc values to determine

which one was the best fit for the data. On both corpora, we

notice that the best predictor of eye-tracking features is BL-sur-cos,
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TABLE 4 Average AICc, and AICc for TRT, FFD, and NF on Provo with SGNS vectors.

Avg TRT FFD NF

Model AICc Delta AICc Delta AICc Delta AICc Delta

BL-sur-cos 279 0 1,309 0 288 0 –762 0

BL-sur 391 112 1,436 127 441 153 –704 58

BL-cos 437 158 1,468 159 406 118 –594 168

BL 619 340 1,683 374 643 354 –470 292

TABLE 5 Average AICc, and AICc for TRT, FFD, and NF on Provo with BERT vectors.

Avg TRT FFD NF

Model AICc Delta AICc Delta AICc Delta AICc Delta

BL-sur-cos 67 0 1,081 0 –88 0 –791 0

BL-cos 196 129 1,216 135 –0.26 87 –627 165

BL-sur-Spearman 385 318 1,429 348 434 521 –707 85

BL-sur 391 324 1,436 355 441 529 –704 88

BL-Spearman 529 462 1,674 593 633 721 –474 315

BL 619 552 1,683 602 643 730 –470 321

including the interactions between baseline features, but with no

interactions between cosine and surprisal. The fact that the regression

model using both surprisal and cosine consistently performs better

than the ones using only one of the two is strong evidence that

they are both explanatory factors of reading times. Furthermore,

while comparing BL-cos-sur with SGNS embeddings, and BL-cos-

sur with BERT embeddings, it is possible to notice how the usage of

the latter set of vectors improves the model (AICc values on GECO:

60,286 with SGNS-59,566 with BERT; AICc values on Provo: 279 with

SGNS-67 with BERT).

Looking at the p-values of the regression features of our BL-sur-

cos model, we observe that both cosine similarity and surprisal are

statistically highly significant at p < 0.001 (for a complete analysis

of regression features significance scores see Appendix 1). Although

the combination of both cosine similarity and surprisal is the best

performing model on both corpora, it is useful to focus also on

the performances of BL-cos, and BL-sur while employing different

vector models for BL-cos, to get further insights on the different

contributions of surprisal and cosine similarity.We performed nested

model comparisons with the R anova function using BL-sur-cos and

three partial models: one excluding the cosine similarity (BL-sur), and

the other two excluding surprisal (BL-cos with BERT vectors and BL-

cos with SGNS vectors), in order to check whether the two features

make independent contributions. We obtained strongly significant p-

values (p < 0.001) on both corpora, regardless of vector type and for

all the eye-tracking features, indicating that both semantic relatedness

and surprisal provide an independent and significant contribution.

Focusing now on BL-cos and BL-sur, the performance on GECO

is reported in Tables 2, 3. BL-cos with BERT vectors: Delta cosine

similarity is 585, Delta surprisal is 926 (surprisal:+341) (Table 3); BL-

cos with SGNS vectors: Delta surprisal is 206, Delta cosine similarity

is 696 (surprisal: −490) (Table 2); On Provo instead BL-cos with

BERT vectors: Delta cosine similarity is 129, Delta surprisal is 324

(surprisal:+195) (Table 5); BL-cos with SGNS vectors: Delta surprisal

is 112, Delta cosine is 158 (surprisal:−46) (Table 4). This first analysis

shows that BL-cos and BL-sur have quantitatively similar behavior,

suggesting that cosine and surprisal help to predict eye-tracking

values to the same extent. A difference in the salience of the two

features is instead highlighted by the Part-of-Speech analysis (see the

related subsection below).

It is also clear that models using SGNS vectors have poorer

performances than the ones relying on BERT. Not only, as

already mentioned, the usage of BERT embeddings improves the

performances of the BL-cos-sur model, but while comparing the

BL-cos models and the BL-sur model, the first shows better

performances than the latter only when BERT vectors are involved.

This difference in the capability of BL-cos models in predicting eye-

tracking features suggests that the findings in Frank (2017) might

be influenced by the specific type of embedding model used for the

experiments (SGNS).

Once confirmed that the model including both surprisal and

cosine similarity is the one performing better, we performed

further analysis focused on BL, BL-sur, and BL-cos only, in

order to understand the individual contribution of the two

computational metrics.

4.1.3. Error analysis
In order to have a more fine-grained view of the performance

differences between models BL-cos and BL-sur, we also analyzed

the correlation between the Mean Absolute Error (MAE) of

the models and word-level features. We tested the following

features: target and previous word length, target and previous word

frequency, target word length, target word position, fixation of the

previous word (a boolean feature), and the reading complexity of

the sentence from the beginning to the target word, which we

computed using the Dale-Chall readability formula (Dale and Chall,

1948).

After we averaged the correlations among all the eye-tracking

features to be predicted (see Appendix 2) we noticed that almost
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TABLE 6 Average MAE on Provo and GECO content and function words

frommodels BL, BL-cos, and BL-sur for the three eye-tracking features and

their mean.

Feature Model Word type

Content Function

Provo GECO Provo GECO

TRT BL 0.228 0.337 0.290 0.457

BL-cos 0.217 0.333 0.281 0.457

BL-sur 0.215 0.330 0.275 0.454

FFD BL 0.180 0.295 0.246 0.425

BL-cos 0.159 0.281 0.216 0.422

BL-sur 0.172 0.289 0.236 0.423

NF BL 0.178 0.228 0.147 0.187

BL-cos 0.177 0.228 0.132 0.184

BL-sur 0.170 0.226 0.140 0.185

Avg BL 0.195 0.287 0.228 0.356

BL-cos 0.185 0.281 0.210 0.354

BL-sur 0.186 0.282 0.217 0.354

The bold formatting indicates the lowest MAE averaged over the 3 eye tracking features.

all the values are negative, suggesting that: (i) longer and more

frequent words are easier to be predicted; (ii) words at the

beginning of the sentence are harder to predict for our models,

plausibly because a wider and richer context benefits both cosine

similarity and surprisal; (iii) sentences with higher readability

make better predictions possible. Even so, the correlations between

MAE and these features are generally low, ranging from 0.002 for

previous word length to 0.1 for target word length. However, it

is possible to use these values for a comparison between models

BL-cos and BL-sur. We notice that surprisal seems to be more

sensitive to target word frequency and previous word fixation

if compared to cosine similarity, while the latter shows slightly

higher correlations with target word length and position within

the sentence.

4.1.4. POS analysis
Both GECO and Provo provide information regarding the

part of speech (POS) of each word in the corpora. We used

this information to check the performances of BL-cos and BL-

sur on different POS. We first checked the average MAE of BL,

BL-cos, and BL-sur for function words (pronouns, conjunctions,

determiners, numeral, existential there’s, prepositions, interjections)

and content words (nouns, verbs, adverbs, adjectives) for each

eye-tracking feature (Table 6). Then for a more detailed analysis,

we ranked the words following the MAE values, and finally,

we focused on the 10, 100, 500, and 1,000 words with the

highest MAE.

We found that for all three models function words are harder

to be predicted than content words, especially coordinating

conjunctions and pronouns. Noticeably, previous research

had already found that the semantics of function words is

difficult to model even for Transformers (Kim et al., 2019),

and that fine-tuned multilingual Transformer model struggle

the most with the prediction of their fixation metrics

(Hollenstein et al., 2022b). Regarding the performances

of BL-cos and BL-sur, even if both cosine similarity and

surprisal help in lowering the average MAE, if compared to

the baseline, cosine similarity employment improves slightly

more the performance of the model for both content words

and function words.

4.2. Eye-tracking features analysis

While comparing the different models, it was clear that some

performance differences were due to the eye-tracking feature the

models had to predict. For example, the data showed in the Avg

column of Tables 2–5 are mean values computed using the AICc

scores of TRT, FFD, and NF, but if we focus on the performances

of models BL-cos and BL-sur, depending on the target eye-tracking

features, we notice some interesting and substantial differences: on

TRT cosine similarity-only and surprisal-only models follow the

general tendency we described in Section 4.1 (i.e., surprisal better

than cosine similarity when BL-cos makes use of SGNS vectors to

compute cosine), but with cosine similarity performing generally

slightly better than surprisal; on FFD the model using baseline

regression features and cosine similarity only performs consistently

better, except when using SGNS on GECO (but not on Provo), while

onNFmodel BL-sur outperforms BL-cos on both corpora, even when

using BERT vectors in BL-cos.

In the analysis of the correlations between models MAE and

word features, we found that for TRT and FFD, the highest

correlation (especially on GECO) is the one between MAE and the

word length. Since it is a negative correlation, we can conclude

that shorter words induce higher MAE: The shorter the word,

the harder for the model to predict the feature value. On the

other hand, with NF, word length has the highest, but positive,

correlation with the MAE, thus suggesting that for this eye-tracking

feature shorter words are easier to be predicted. Finally, for all

the eye-tracking features on both corpora, word frequency is

negatively correlated. As expected, prediction is more difficult for

the rarest words.

When we checked the contribution of BL-cos and BL-

sur in comparison to the baseline for different parts of

speech, we noticed that for FFD cosine similarity generally

decreases the MAE, while for TRT surprisal gives a generally

higher contribution, except for verbs and adjectives (Tables 7,

8). Regarding NF, cosine similarity lowers the MAE for

function words, while surprisal has a major impact on content

words. However, for the NF feature content words are less

easily predicted.

We surmise that the different performances of BL-sur and BL-

cos in predicting these three eye-tracking features might be explained

by taking into account the reading process stage each feature is

related to. On one hand, since FFD is typically associated with

early stages of reading, such as lexical information process, it is not

surprising that the model relying on semantic relatedness between

the context and the target word performs better. On the other hand,
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TABLE 7 Average MAE on Provo content words.

Model TRT FFD NF

N RB V J N RB V J N RB V J

BL 0.243 0.242 0.210 0.209 0.190 0.184 0.171 0.166 0.195 0.180 0.152 0.180

BL-cos 0.231 0.243 0.198 0.199 0.178 0.184 0.157 0.154 0.192 0.178 0.149 0.179

BL-sur 0.228 0.221 0.200 0.205 0.181 0.176 0.163 0.163 0.183 0.171 0.150 0.178

N, nouns; RB, adverbs; V, verbs; J, adjectives-for the three eye-tracking features. The bold formatting indicates the values with the lowest MAE of each POS within each eye-tracking feature.

TABLE 8 Average MAE on GECO content words.

Model TRT FFD NF

N RB V J N RB V J N RB V J

BL 0.335 0.365 0.334 0.309 0.289 0.322 0.294 0.273 0.238 0.226 0.217 0.242

BL-cos 0.328 0.367 0.332 0.301 0.280 0.323 0.292 0.264 0.237 0.226 0.217 0.241

BL-sur 0.323 0.360 0.332 0.299 0.280 0.320 0.292 0.262 0.234 0.225 0.216 0.240

N, nouns; RB, adverbs; V, verbs; J, adjectives-for the three eye-tracking features. The bold formatting indicates the values with the lowest MAE of each POS within each eye-tracking feature.

the performances of BL-cos and BL-sur on TRT and NF, features

that reflect later stages of the reading process, including information-

structural integration, may suggest that predictability is a key factor

in handling syntagmatic relations and integrating semantic and

syntactic information.

5. Conclusion

In this paper, we implemented four different kinds of regression

models to predict three eye-tracking features of two corpora

collecting eye movements data, with the aim of investigating the

role and interplay between distributional measures of target-context

semantic relatedness, and target surprisal, as computed with a state-

of-the-art neural language model. The main research question was

whether semantic relatedness is indeed made redundant by surprisal,

as argued by Frank (2017), or instead plays an independent role in

explaining eye-tracking data. The models include: (i) a baseline with

word-level features, (ii) the same baseline with cosine similarity, (iii)

the baseline with surprisal, iv) the baseline with both cosine similarity

and surprisal.

Our results show that the complete model systematically

outperforms the others for every eye-tracking feature and that both

semantic relatedness and surprisal benefit the prediction of eye-

tracking features, given the performance drop while factoring one

of them out. Surprisal and distributional semantic relatedness clearly

overlap, especially since the latter is nowadays commonly computed

using word embeddings produced by DSMs trained with a prediction

objective, like the one that surprisal formalizes. Yet, they capture

different linguistic dimensions. Surprisal models the syntagmatic

predictability of a word, given the preceding ones. On the other hand,

both static and contextual DSMs use prediction as a distributional

signal to form internal representations of lexical meaning that capture

information more directly pertaining to the paradigmatic dimension,

such as belonging to the same semantic classes and domains or

sharing similar features. For instance, the words pie and cake are

paradigmatically related because they share several salient attributes,

such as being edible, sweet, etc. (Chersoni et al., 2021) showed

that word embeddings encode a vast range of linguistically and

cognitively relevant semantic features. Therefore, the results of our

analyzes suggest that, despite their overlap, corpus-based semantic

relatedness and surprisal capture different dimensions that play

an autonomous role during reading. While surprisal reflects how

predictable the target word is from the previous context, semantic

relatedness models how coherent the meaning of the target is with

respect to the context one (e.g., they belong to the same semantic field

or describe a prototypical situation). Frank andWillems (2017) found

that syntagmatic surprisal and paradigmatic semantic relatedness can

have neurally distinguishable effects during language comprehension.

Our analyzes show that their independent effect can be detected in

eye-tracking data too.

We also analyzed whether the relatedness and surprisal have a

differential effect depending on the target part-of-speech. Comparing

the average MAE of our models, we noticed that surprisal mainly

helps to improve the model’s performances on content words, while

the contribution of semantic relatedness includes function words as

well. Finally, we investigated whether the interplay between surprisal

and relatedness is affected by the type of word embeddings used to

compute the latter, in particular considering the difference between

static DSMs (SGNS) and contextual ones (BERT). The experiments

show that when using BERT vectors, which are inherently able

to account for context-dependent meaning shifts and carry out

an implicit form of word-sense disambiguation, the model BL-cos

performs better than BL-sur, while static vectors make the latter

outrank the model using semantic relatedness only. Overall, our

findings suggest that the kind of word embedding employed for

computing vector distances has a significant impact, which may

explain the differences from the findings by Frank (2017).

The present work admittedly has some limitations. For example,

we employed and compared a restricted pool of language models

and word embedding models, and a possible future direction could

be testing other, more recent models (e.g., XLNet Yang et al.

2019, among others, RoBERTa Liu et al., 2019), or different static

embedding models (e.g., GloVe Pennington et al., 2014, FastText

Bojanowski et al., 2017). A particularly interesting issue, raised by

some recent works, is the relationship between the size of a language

model and its capacity to model human behavioral data (Oh and

Schuler, 2022; Shain et al., 2022). In particular, Oh and Schuler
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(2022) found that larger language models are worse at predicting

human reading times: largermodels tend to be less surprised by open-

class words because they have been trained on many more word

sequences than those available to humans. Moreover, phenomena

of inverse scaling have also been reported for language modeling

of negations (Jang et al., 2022) and quantifiers (Kalouli et al., 2022;

Michaelov and Bergen, 2022). It might be worth testing whether

this increasing lack of alignment with human performance as scale

increases can be observed also at the level of similarity estimation

with the embeddings, or it is an effect limited to language model

predictions. With this purpose, it could be interesting to compare

embedding models of different size with BERT, and see if there are

differences in modeling open class vs. function words.

Another limitation is due to the fact that we used English

materials only, and this leaves open the question whether our

results would apply to other languages. An interesting research

path to pursue is to compare models with cosine similarity and

surprisal using multilingual data. In fact, we plan to extend our

analyzes to the recently-published MECO corpus (Siegelman et al.,

2022), which provides eye-tracking data on comparable texts for 13

different languages.

Finally, if the importance and independence of surprisal and

semantic relatedness are clear, given the results shown in the

present paper, a preliminary feature importance analysis using a

random forest regression model (see Appendix 3) revealed how

target and previous word lengths are the features with the higher

impact, and most importantly, surprisal systematically seems to

have a larger effect on the model compared to cosine similarity.

These preliminary results suggest one further possible research

direction: the employment and comparison of different models and

a consequent feature importance analysis, in order to find even more

generalizable insights regarding the role of semantic relatedness and

predictability in the reading process.
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