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Abstract Distributional semantics has deeply changed in the last decades. First,

predict models stole the thunder from traditional count ones, and more recently both

of them were replaced in many NLP applications by contextualized vectors pro-

duced by neural language models. Although an extensive body of research has been

devoted to Distributional Semantic Model (DSM) evaluation, we still lack a thor-

ough comparison with respect to tested models, semantic tasks, and benchmark

datasets. Moreover, previous work has mostly focused on task-driven evaluation,

instead of exploring the differences between the way models represent the lexical

semantic space. In this paper, we perform a large-scale evaluation of type distri-

butional vectors, either produced by static DSMs or obtained by averaging the

contextualized vectors generated by BERT. First of all, we investigate the perfor-

mance of embeddings in several semantic tasks, carrying out an in-depth statistical
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5 Università per Stranieri di Siena, Siena & Università di Pisa, Pisa, Italy
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analysis to identify the major factors influencing the behavior of DSMs. The results

show that (i) the alleged superiority of predict based models is more apparent than

real, and surely not ubiquitous and (ii) static DSMs surpass BERT representations in

most out-of-context semantic tasks and datasets. Furthermore, we borrow from

cognitive neuroscience the methodology of Representational Similarity Analysis

(RSA) to inspect the semantic spaces generated by distributional models. RSA

reveals important differences related to the frequency and part-of-speech of lexical

items.

Keywords Distributional semantics � Evaluation � Contextual embeddings �
Representational Similarity Analysis

1 Introduction

Distributional semantics (Lenci, 2008, 2018; Boleda, 2020) is today the leading

approach to lexical meaning representation in Natural Language Processing (NLP),

Artificial Intelligence (AI), and cognitive modeling. Grounded in the Distributional
Hypothesis (Harris, 1954; Sahlgren, 2008), according to which words with similar

linguistic contexts tend to have similar meanings, distributional semantics

represents lexical items with real-valued vectors (nowadays commonly called

embeddings) that encode their linguistic distribution in text corpora. We refer to

models that learn such representations as Distributional Semantic Models (DSMs).

The landscape of distributional semantics has undergone deep transformations

since its outset. Three main generations of models have followed one another: (i)

count DSMs that build distributional vectors by recording co-occurrence frequen-

cies; (ii) predict DSMs that learn vectors with shallow neural networks trained to

predict surrounding words; (iii) contextual DSMs that use deep neural language

models to generate inherently contextualized vectors for each word token, and

therefore radically depart from previous static DSMs that instead learn a single

vector per word type. Across its history, the changes in distributional semantics

involve the way to characterize linguistic contexts, the methods to generate word

vectors, the very nature of such vectors (e.g., type vs. token ones), and the model

complexity itself, which has exponentially grown especially with the last generation

of deep neural DSMs, now consisting of hundreds of billions parameters and

requiring equally huge amounts of computational resources for their training. In this

paper, we assess the effects of such development and we report on a large-scale

evaluation of the most influential past and present DSMs with a twofold aim:

1. investigating the performance of embeddings in several semantic tasks. We

performed an in-depth statistical analysis to identify the major factors

influencing the behavior of static DSMs, in particular to understand whether

predict models are really superior to count ones;

2. exploring the differences of the semantic spaces produced by both static and
contextual DSMs, zooming-in on various areas of the lexicon differing for

frequency and part-of-speech (POS). This study was carried out with
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Representational Similarity Analysis, a technique developed in cognitive

neuroscience.

All our analyses focus on type distributional vectors, because of their importance for

linguistic tasks, even if they have been superseded by token embeddings in most

NLP applications. Token vectors are attractive as they are able to capture word

meaning in context. On the other hand, although contexts can induce important

effects of meaning modulation, human lexical competence is also context-

independent. When presented with word types, human subjects are indeed able to

carry out several semantic tasks on them, such as rating their semantic similarity or

group them into categories (Murphy, 2002). For instance, the fact that dog and cat
belong to the same semantic category is a type-level property. This supports the

hypothesis that word meanings abstract and are (at least partially) invariant from the

specific contexts in which their tokens are observed. Therefore, testing type

embeddings allows us to investigate their ability to capture such context-

independent dimensions of lexical meaning. Besides the analysis of the type

embeddings natively generated by static DSMs, we also investigate to what extent

type-level semantic properties can be reconstructed from contextualized token

vectors (Chronis and Erk, 2020).

This paper is organized as follows: Sect. 2 reconstructs the main evolutionary

phases of distributional semantics, Sect. 3 reviews current work on DSM evaluation,

Sect. 4 presents a battery of experiments to test static DSMs on intrinsic and

extrinsic tasks, and Sect. 5 compares them with BERT, as a representative of the last

generation of contextual DSMs. Section 6 studies their semantic spaces with

Representational Similarity Analysis, and Sect. 7 discusses the significance of our

findings for research on distributional semantics.1

2 From count vectors to contextual embeddings: three generations
of DSMs

Many types of DSMs have been designed throughout the years (see Table 1). The

first generation of DSMs dates back to the 1990s and is characterized by so-called

count models, which learn the distributional vector of a target lexical item by

recording and counting its co-occurrences with linguistic contexts. These can

consist of documents (Landauer and Dumais, 1997; Griffiths et al., 2007) or lexical

collocates, the latter in turn identified with either a ‘‘bag-of-word’’ window

surrounding the target (Lund and Burgess, 1996; Kanerva et al., 2000; Sahlgren,

2008) or syntactic dependency relations extracted from a parsed corpus (Padó and

Lapata, 2007; Baroni and Lenci, 2010). In matrix models, directly stemming from

the Vector Space Model in information retrieval (Salton et al., 1975), target-context

co-occurrence frequencies (or frequency-derived scores that are more suitable to

reflect the importance of the contexts) are arranged into a co-occurrence matrix (or

1 The DSMs and scripts are available on GitHub: https://github.com/Unipisa/DSMs-evaluation.
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a more complex geometric object, like a tensor; Baroni and Lenci, 2010). In this

matrix, target lexical items are represented with high-dimensional and sparse explicit
vectors (Levy and Goldberg, 2014b), such that each dimension is labeled with a

specific context in which the targets have been observed in the corpus. In order to

improve the quality of the resulting semantic space by smoothing unseen data,

removing noise, and exploiting redundancies and correlations between the linguistic

contexts (Turney and Pantel, 2010), the co-occurrence matrix is typically mapped

onto a reduced matrix of low-dimensional, dense vectors consisting of ‘‘latent’’

semantic dimensions implicit in the original distributional data. Dense vectors are

generated from explicit ones by factorizing the co-occurrence matrix with Singular

Value Decomposition (Landauer and Dumais, 1997) or with Bayesian probabilistic

methods like Latent Dirichlet Allocation (Blei et al., 2003). A different kind of count

DSMs are random encoding models: Instead of collecting global co-occurrence

statistics into a matrix, they directly learn low-dimensional distributional represen-

tations by assigning to each lexical item a random vector that is incrementally

updated depending on the co-occurring contexts (Kanerva et al., 2000).

With the emergence of deep learning methods in the 2010s (Goodfellow et al.,

2016; Goldberg, 2017), a new generation of so-called predict models has entered the

scene of distributional semantics and competed with more traditional ones. Rather

than counting co-occurrences, predict DSMs are artificial neural networks that

directly generate low-dimensional, dense vectors by being trained as language

models that learn to predict the contexts of a target lexical item. In this period of

innovation, documents have largely been abandoned as linguistic contexts, and

models have focused on window-based collocates and to a much lesser extent on

syntactic ones (Levy and Goldberg, 2014b). Thanks to the deep learning wave,

neural models – not necessarily deep in themselves – like word2vec (Mikolov et al.,

2013a, 2013b) and FastText (Bojanowski et al., 2017) have quickly overshadowed

count DSMs, though the debate on the alleged superiority of predict models has

Table 1 Some of the most influential DSMs to date

Model name References

Hyperspace Analogue of Language (HAL) Lund and Burgess (1996)

Latent Semantic Analysis (LSA) Landauer and Dumais (1997)

Random Indexing (RI) Kanerva et al. (2000)

Dependency Vectors (DV) Padó and Lapata (2007)

Topic Models Griffiths et al. (2007)

Random Indexing with permutations Sahlgren et al. (2008)

Distributional Memory (DM) Baroni and Lenci (2010)

word2vec (CBOW, Skip-Gram) Mikolov et al. (2013a, 2013b)

Global Vectors (GloVe) Pennington et al. (2014)

FastText Bojanowski et al. (2017)

Embeddings from Language Models (ELMo) Peters et al. (2018)

Bidirectional Encoder Representations from Transformers

(BERT)

Devlin et al. (2019)
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produced inconclusive results (Baroni et al., 2014; Levy et al., 2015). The only

exception to the dominance of predict models in this period is represented by GloVe

(Pennington et al., 2014). However, despite being a matrix DSM, the GloVe method

to learn embeddings is closely inspired by neural language models.

The advent of predict DSMs has also brought important methodological

novelties. Besides popularizing the expression ‘‘word embedding’’ as a kind of

standard term to refer to distributional representations, deep learning has radically

modified the scope and application of distributional semantics itself. The first

generation of DSMs essentially encompassed computational methods to estimate

the semantic similarity or relatedness among words (e.g., to build data-driven

lexical resources). On the other hand, embeddings are nowadays routinely used in

deep learning architectures to initialize their word representations. These pretrained
embeddings allow neural networks to capture semantic similarities among lexical

items that are beneficial to carry out downstream supervised tasks. Thus,

distributional semantics has become a general approach to provide NLP and AI

applications with semantic information. This change of perspective has also affected

the approach to DSM evaluation. The previous generation of distributional

semantics usually favoured intrinsic methods to test DSMs for their ability to

model various kinds of semantic similarity and relatedness (e.g., synonymy tests,

human similarity ratings, etc.). Currently, the widespread use of distributional

vectors in deep learning architectures has boosted extrinsic evaluation methods: The

vectors are fed into a downstream NLP task (e.g., part-of-speech tagging or named

entity recognition) and are evaluated with the system’s performance.

A further development in distributional semantics has recently come out from the

research on deep neural language models. For both count and predict DSMs, a

common and longstanding assumption is the building of a single, stable represen-

tation for each word type in the corpus. In the latest generation of embeddings,

instead, each word token in a specific sentence context gets a unique representation.

These models typically rely on a multi-layer encoder network and the word vectors

are learned as a function of its internal states, such that a word in different sentence

contexts determines different activation states and is represented by a distinct

vector. Therefore, the distributional representations produced by these new

frameworks are called contextual embeddings (Liu et al., 2020), as opposed to

the static ones produced by earlier DSMs. The new generation of contextualized

vectors was sparked by ELMo (Peters et al., 2018), which is based on a two-layer

bidirectional LSTM. Nowadays, the most popular architectures for obtaining

contextual embeddings, such as BERT (Devlin et al., 2019), consist of a stack of

Transformer layers (Vaswani et al., 2017).

Generating lexical representations is not the end goal of systems like BERT or

GPT (Radford et al., 2018, 2019), which are designed chiefly as general, multi-task

architectures to develop NLP applications based on the technique of fine-tuning.

However, since their internal layers produce embeddings that encode several aspects

of meaning as a function of the distributional properties of words in texts, BERT

and its relatives can also be regarded as DSMs (specifically, predict DSMs, given

their language modelling training objective) that generate token distributional
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vectors (Mickus et al., 2020).2 In fact, the improvements achieved by these systems

in several tasks has granted huge popularity to contextual embeddings that have fast

replaced static ones, especially in downstream applications. The reason for this

success is ascribed to the ability of such representations to capture several linguistic

features (Tenney et al., 2019) and, in particular, context-dependent aspects of word

meaning (Wiedemann et al., 2019), which overcomes an important limit of static

embeddings that conflate different word senses in the same type vector (Camacho-

Collados and Pilehvar, 2018). In this last generation of DSMs, the contexts of the

target lexical items are not selected a priori. Models are instead fed with huge

amounts of raw texts and they learn (e.g., thanks to the attention mechanism of

Transformers) which words are most related to the one that is being processed,

thereby encoding in the output vectors relevant aspect of the context structure.

On the other hand, the architectures used to learn contextual embeddings have

reached an unprecedented degree of complexity, even when compared to the

previous generation of predict DSMs. For instance, the largest version of BERT has

340 million parameters, and some of the later models, like GPT, have hundreds of

billions of them. These deep networks need to be trained on huge amounts of text

and have several layers each producing a different contextualized vector encoding

several types of morpho-syntactic and semantic information. Therefore, the

presumed higher quality of last-generation embeddings comes to the cost of an

increased amount of complexity that often obscures the understanding of their

content.

3 Related work on DSM evaluation

There is an extensive body of research related to DSM evaluation. Broadly

speaking, large scale evaluation boils down to two highly interrelated questions: (i)

What is the effect of model and/or hyperparameter choice (or other factors)?; (ii)

What do the evaluation metrics tell us? These questions have the following

normative counterparts: (i) What is the ‘‘optimal’’ model and what hyperparameters

should be used?; (ii) How should models be evaluated?

Most existing work is concerned with the first question and investigates the effect

of model and/or hyperparameter choice. For example, Sahlgren and Lenci (2016)

explore the effect of data size on model performance. Levy and Goldberg (2014a),

Melamud et al. (2016), Lapesa and Evert (2017) and Li et al. (2017) study the effect

of context type (i.e., window-based vs. syntactic collocates) and embedding

dimension, whereas Baroni et al. (2014) and Levy et al. (2015) study the effect of

modeling category (i.e., count vs. predict models). In particular, Levy et al. (2015)

make the argument that model types should not be evaluated in isolation, but that

using comparable hyperparameters (or tuning) is necessary for fair and informative

comparison.

2 Westera and Boleda (2019) instead argue that the domain of distributional semantics is limited to

context-invariant semantic representations. However, context-sensitive token vectors are not an absolute

novelty in the field (Erk and Padó, 2010), though they have remained a kind of sideshow until the boom of

deep neural language models.
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Other works instead focus on the evaluation type. Chiu et al. (2016) observe that

intrinsic evaluation fails to predict extrinsic (sequence labeling) performance,

stressing the importance of extrinsic evaluation. Rogers et al. (2018) introduce an

extended evaluation framework, including diagnostic tests. They corroborate the

findings of Chiu et al. (2016), but show that performance for other extrinsic tasks is

predicted by intrinsic performance, and that there exists diagnostic tasks that predict

sequence labeling performance.

However, much of this work is limited to one type or family of DSMs. For

example, Levy and Goldberg (2014a), Chiu et al. (2016), Ghannay et al. (2016),

Melamud et al. (2016), and Rogers et al. (2017) are all concerned solely with

predict word embeddings. Whereas Bullinaria and Levy (2007, 2012) and Lapesa

and Evert (2014, 2017) limit their exploration to count DSMs. Conversely, work

that compares across model type boundaries has been restricted in the scope of

evaluation, being singularly concerned with intrinsic evaluation (Baroni et al., 2014;

Levy et al., 2015; Sahlgren and Lenci, 2016). As far as we are aware, the only large-

scale comparison across model type boundaries, involving both intrinsic and

extrinsic tasks, is Schnabel et al. (2015). However, they used default hyperparam-

eters for all models, and set the embedding dimension to 50.

Recently, attention has shifted towards comparing the type embeddings produced

by static DSMs with those obtained by pooling the token contextualized

embeddings generated by deep neural language models (Ethayarajh, 2019;

Bommasani et al., 2020; Chronis and Erk, 2020; Vulić et al., 2020). However,

these works have so far addressed a limited number of tasks or a very small number

of static DSMs.

This analysis of the state of the art in DSM evaluation reveals that we still lack a

comprehensive picture, with respect to tested models, semantic tasks, and

benchmark datasets. Moreover, the typical approach consists in measuring how
good a given model is and which model is the best in a particular task. Much less

attention has been devoted to exploring the differences between the way models

represent the lexical semantic space. The following sections aim at filling these

gaps.

4 Quantitative evaluation of static DSMs

A traditional DSM is defined by a set T of target words and a set C of linguistic
contexts. The model assigns to any t 2 T a n-dimensional distributional vector
encoding its co-occurrences with the contexts C. We reserve the term word
embedding to refer only to low-dimensional, dense distributional vectors.

In this section, we present a large-scale quantitative evaluation of static DSMs, in

which several models (Sect. 4.1) are tested on a wide range of semantic tasks (Sect.

4.2) with the aim of identifying the key factors affecting their performance.
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4.1 DSM selection

We selected 44 static DSMs defined by the combinations of three main factors:

the method used to learn the distributional vectors (the ‘model’), the context type,

and the number of vector dimensions (see Table 2).

(A) model—The type of method used to learn the vectors. The models are

representative of the major algorithms used to construct distributional

representations:

(i) matrix count models

PPMI—this model consists in a simple co-occurrence matrix with

collocate contexts (cf. below), weighted with Positive Pointwise

Mutual Information (PPMI), computed as follows:

PPMIht;ci ¼ PMIht;ci ¼ log2

pðt; cÞ
pðtÞpðcÞ if PMIht;ci[ 0

0 otherwise

8
<

:
ð1Þ

where p(t, c) is the co-occurrence probability of the target word t
with the collocate context c, and p(t) and p(c) are the individual

target and context probabilities. As no dimensionality reduction is

applied, PPMI produces high-dimensional, sparse, explicit distri-

butional vectors;

SVD—like PPMI, but with low-dimensional embeddings gener-

ated with Singular Value Decomposition (SVD);

LSA—an implementation of Latent Semantic Analysis by Lan-

dauer and Dumais (1997) with document contexts, log entropy

Table 2 Static DSMs and parameter settings

Model Context Vector type Dimensions

Matrix count models

PPMI window.{2,10}; syntax.{typed,filtered} Explicit 10,000

SVD window.{2,10}; syntax.{typed,filtered} Embedding 300; 2000

LSA document Embedding 300; 2000

LDA document Embedding 300; 2000

GloVe window.{2,10} Embedding 300; 2000

Random encoding count models

RI window.{2,10} Embedding 300; 2000

RI-perm window.{2,10} Embedding 300; 2000

Predict models

SGNS window.{2,10}; syntax.{typed,filtered} Embedding 300; 2000

CBOW window.{2,10} Embedding 300; 2000

FastText window.{2,10} Embedding 300; 2000
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weighting, and SVD. LSA was trained with Gensim (Řehŭřek and

Sojka, 2010);

LDA—a Topic Model (Griffiths et al., 2007) based on Latent

Dirichlet Allocation (LDA) (Blei et al., 2003). Given a word-by-

document co-occurrence matrix and z1; . . .; zk topics, LDA learns

the word probability distribution for each topic, /, and the topic

probability distribution for each document, h. Each target t is

represented with a topic vector t ¼ ð/1; . . .;/kÞ, such that

/i ¼ pðtjziÞ. LDA was trained with Gensim;

GloVe—word embeddings are generated from the the co-occur-

rence matrix with a weighted regression model, whose learning

objective is to find the vectors that minimize the squared error of

the ratios of co-occurrence probabilities (Pennington et al., 2014).

(ii) random encoding count models

RI—Random Indexing (Kanerva et al., 2000; Sahlgren, 2006)

assigns random index vectors to the words in the model

vocabulary, and adds the random vectors of the neighboring

lexemes to the target embedding:

ti  ti�1 þ
Xn

j¼�n;j6¼0

cj ð2Þ

where ti is the target embedding at step i, n is the extension of the

context window, cj is a sparse k-dimensional random index vector

(with d randomly placed þ1s and �1s) that acts as a fingerprint of

context term cj. RI uses the dynamic context weighting scheme in-

troduced by Sahlgren et al. (2016), which incrementally changes

as new contexts are encountered;

RI-perm – a variation of RI extended with random permutations of

the random index vectors to reflect the position of context items

with respect to the target word (Sahlgren et al., 2008).

(iii) predict models

SGNS—the Skip-Gram with Negative Sampling model by

Mikolov et al. (2013b), which predicts the context words based

on the target item. SGNS was trained with word2vecf (Levy and

Goldberg, 2014a);

CBOW—the Continuous Bag-Of-Words model, which predicts a

target based on the context words (Mikolov et al. 2013a). CBOW

was trained with the word2vec library;

FastText—the extension of SGNS by Bojanowski et al. (2017).

FastText learns embeddings for character n-grams instead of word
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types, which are then represented as the sum of the n-gram

embeddings.

(B) context—The type of linguistic contexts. They are representative of the major

kinds used in distributional semantics:

(i) undirected window-based collocates The contexts of a target word t
are the collocate words that occur within a certain linear distance from

t specified by a context window [m, n], such that m is the number of

words to the left of t and n is the number of units to the right of t. The

collocates are undirected, because they are not distinguished by their

position (left or right) with respect to the target. Window-based

collocates do not take into account linguistic structures, since context

windows are treated as bags of independent words ignoring any sort of

syntactic information. Previous research has shown that the size of the

context window has important effects on the resulting semantic space

(Sahlgren, 2006; Bullinaria and Levy, 2007; Baroni and Lenci, 2011;

Bullinaria and Levy, 2012; Kiela and Clark, 2014). Therefore, we

experimented with two types of window-based DSMs:

window.2 (w2)—narrow context window of size [2, 2]. Narrow

windows are claimed to produce semantic spaces in which nearest

neighbors belong to the same taxonomic category (e.g., violin and

guitar);
window.10 (w10)—wide context window of size [10, 10]. Large

windows would tend to promote neighbors linked by more

associative relations (e.g., violin and play).

(ii) syntactic collocates (only for PPMI, SVD, and SGNS) The contexts

of a target t are the collocate words that are linked to t by a direct

syntactic dependency (subject, direct object, etc.). Some experiments

suggest that syntactic collocates tend to generate semantic spaces

whose nearest elements are taxonomically related lexemes, mainly

co-hyponyms (Levy and Goldberg,, 2014a). However, the question

whether syntactic information provides a real advantage over

window-based representations of contexts is still open (Kiela and

Clark, 2014; Lapesa and Evert, 2017).

syntax.filtered (synf)—dependency-filtered collocates. Syntactic

dependencies are used just to identify the collocates, without

entering into the specification of the contexts themselves (Padó

and Lapata, 2007). Therefore, identical lexemes linked to the

target by different dependency relations are mapped onto the same

context;

syntax.typed (synt)—dependency-typed collocates. Syntactic

dependencies are encoded in the contexts, typing the collocates

(e.g., nsubj-dog). Typing collocates with dependency relations
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captures more fine-grained syntactic distinctions, but on the other

hand produces a much larger number of distinct contexts (Baroni

and Lenci, 2010);

(iii) documents (only for LSA and LDA)—the contexts of a target t are

the documents they occur in. The use of textual contexts derives

from the Vector Space Model in information retrieval, whose target

semantic dimension is that of topicality, or aboutness. Documents

are thus represented with their word distribution, and, symmetrically,

lexical items with their distribution in documents, which can be

regarded as ‘‘episodes’’ (Landauer and Dumais, 1997) that become

associated with the words therein encountered.

(C) dimensions—the number of vector dimensions. The settings are 300 and 2000

for embeddings, and 10, 000 for explicit PPMI distributional vectors.

All 44 static DSMs were trained on a concatenation of ukWaC and a 2018 dump of

English Wikipedia.3 The corpus was case-folded, and then POS-tagged and

syntactically parsed with CoreNLP (Manning et al., 2014), according to the

Universal Dependencies (UD) annotation scheme.4 We removed all words whose

frequency was below 100. To reduce the negative effects of high frequency words,

we followed Levy et al. (2015) and we created a subsampled version of the training

corpus with the method by Mikolov et al. (2013b). Every lexical item l whose

frequency F(l) was equal to or greater than the threshold t was randomly removed

with this probability:

pðlÞ ¼ 1�
ffiffiffiffiffiffiffiffiffi
t

FðlÞ

r

ð3Þ

where t ¼ 10�5. The vocabulary V of the full training corpus contains 345, 232

unlemmatized word types, corresponding to more than 3.9 billion tokens. The

subsampled corpus has the same vocabulary and ca. 2.2 billion tokens (a reduction

of 42%). Since word2vec, word2vecf, and FastText perform subsampling natively,

predict DSMs were trained on the full corpus, while count DSMs were trained on

the subsampled corpus.

The DSM targets T and contexts C were selected as follows:

targets—T ¼ V , for all models. Since targets are unlemmatized lexemes, every

DSM assigns a distinct distributional vector to each inflected form. The reason for

3 https://dumps.wikimedia.org.
4 https://stanfordnlp.github.io/CoreNLP/.
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this choice is that several benchmark datasets (e.g., analogy ones) are not

lemmatized;

contexts – the main difference is between collocate vs. document contexts:

collocates—C ¼ V . For syntax-based models, co-occurrences were identified

using the dependency relation linking the target and the context lexeme.5 For

dependency-typed collocates, we used both direct and inverse dependencies.

For instance, given the sentence The dog barks, we considered both the direct

(barks, nsubj-dog) and inverse (dog, nsubj�1-barks) dependencies. To reduce

the very large number of context types, we applied a selection heuristics,

keeping only the typed collocates whose frequency was greater than 500. For

dependency-filtered collocates, both direct (barks, dog) and inverse (dog,
barks) relations were used as well, but without context selection;

documents—C ¼ D, where D includes more than 8.2 million documents,

corresponding to the articles in Wikipedia and ukWaC.

Both count and predict DSMs have several hyperparameters that can deeply affect

the resulting semantic space. Since their complete exploration was not the goal of

the present paper, we relied on the existing literature to select the settings that have

been already shown to improve the model performance. Therefore, we adopted the

following optimization strategies:

– we adopted the context probability smoothing by Levy et al. (2015) to compute

the PPMI weights, and we raised the context frequency to the power of

a ¼ 0:75;

– we applied a context selection heuristics for the explicit PPMI vectors, and we

kept only the top 10, 000 most frequent lexemes. In fact, previous studies have

proved that further expanding the number of contexts increases the training

costs, without substantially improving the quality of distributional representa-

tions (Kiela and Clark, 2014; Lapesa and Evert, 2014);

– we followed Levy et al. (2015) and we discarded the singular value matrix

produced by SVD, using the row vectors of U as embeddings of the targets;

– we trained predict DSMs with the negative sampling algorithm, using 15

negative examples (instead of the default value of 5), as Levy et al. (2015) show

that increasing their number is beneficial to the model performance.

4.2 Tasks and datasets

We tested the 44 static DSMs on the 25 intrinsic (Sect. 4.2.1) and 8 extrinsic

datasets (Sect. 4.2.2) reported in Table 3. Distributional vector similarity was

measured with the cosine.

5 The UD enhanced dependencies were included alongside the usual UD dependencies.
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4.2.1 Intrinsic tasks

For the intrinsic evaluation, we used the most widely used benchmarks in

distributional semantics, grouped into the following semantic tasks:

Synonymy The task is to select the correct synonym to a target word from a

number of alternatives. A DSM makes the right decision if the correct word has the

highest cosine among the alternatives. The evaluation measure is accuracy,

computed as the ratio of correct choices returned by a model to the total number of

test items.

Similarity The task is to replicate as closely as possible human ratings of

semantic similarity, as a relation between words sharing similar semantic attributes

(e.g., dog and horse), hence the name of attributional (or taxonomic) similarity

Table 3 Datasets used in the experiments with the performance metrics

Intrinsic evaluation

Dataset Size Metric Dataset Size Metric

Synonymy Categorization

TOEFL 80 Accuracy AP 402 Purity

ESL 50 Accuracy BATTIG 5,231 Purity

Similarity BATTIG-2010 82 Purity

RG65 65 Correlation ESSLLI-2008-1a 44 Purity

RW 2,034 Correlation ESSLLI-2008-2b 40 Purity

SL-999 999 Correlation ESSLLI-2008-2c 45 Purity

SV-3500 3,500 Correlation BLESS 26,554 Purity

WS-353 353 Correlation Analogy

WS-SIM 203 Correlation SAT 374 Accuracy

Relatedness MSR 8,000 Accuracy

WS-REL 252 Correlation GOOGLE 19,544 Accuracy

MTURK 287 Correlation SEMEVAL-2012 3,218 Accuracy

MEN 3,000 Correlation WORDREP 237,409,102 Accuracy

TR9856 9,856 Correlation BATS 98,000 Accuracy

Extrinsic evaluation

Dataset Training size Test size Task Metric

CONLL-2003 204,566 46,665 Sequence labeling (POS tagging) F-measure

CONLL-2003 204,566 46,665 Sequence labeling (chunking) F-measure

CONLL-2003 204,566 46,665 Sequence labeling (NER) F-measure

SEMEVAL-2010 8,000 2,717 Semantic relation classification Accuracy

MR 5,330 2,668 Sentence sentiment classification Accuracy

IMDB 25,000 25,000 Document sentiment classification Accuracy

RT 5,000 2,500 Subjectivity classification Accuracy

SNLI 550,102 10,000 Natural language inference Accuracy
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(Medin et al., 1993). The evaluation measure is the Spearman rank correlation (q)

between cosine similarity scores and ratings.

Relatedness The task is to model human ratings of semantic relatedness. The

latter is a broader notion than similarity (Budanitsky and Hirst, 2006), since it

depends on the existence of some semantic relation or association between two

words (e.g., horse and saddle). The evaluation measure is Spearman correlation;

Categorization The task consists in grouping lexical items into semantically

coherent classes. We operationalized it with K-means clustering, and we measured

the DSM performance with purity (Baroni and Lenci, 2010):

purity ¼ 1

n

Xk

r¼1

max
i
ðnirÞ ð4Þ

where nir is the number of items from the ith true (gold standard) class that are

assigned to the rth cluster, n is the total number of items and k the number of

clusters. In the best case (perfect clusters), purity will be 1, while, as cluster quality

deteriorates, purity approaches 0.

Analogy completion The task consists in inferring the missing item in an

incomplete analogy a : b ¼ c : ? (e.g., given the analogy Italy : Rome ¼ Sweden : ?,

the correct item is Stockholm, since it is the capital of Sweden). The analogy task

targets relational similarity (Medin et al. 1993), since the word pairs in the two

members of the analogy share the same semantic relation. We addressed analogy

completion with the offset method popularized by Mikolov et al. (2013c), which

searches for the target lexeme t that maximizes this equation:

argmax t2T� ðsimcosðt; cþ b� aÞÞ ð5Þ

where T� is the set of target lexemes minus a, b, and c. The evaluation measure is

accuracy, as the percentage of correctly inferred items.6

The model coverage of the datasets used in all tasks is very high (mean 98%,

standard deviation 3:3%). The intrinsic performance measures were obtained by

running an extended version of the Word Embeddings Benchmarks (Jastrzbski

et al., 2017).7

4.2.2 Extrinsic tasks

For the extrinsic evaluation, distributional vectors were fed into supervised

classifiers for the following tasks (the size of the training and test sets is reported in

Table 3):

Sequence labeling (POS tagging, chunking, and NER) The task is to correctly

identify the POS, chunk, or named entity (NE) tag of a given token. The model is a

multinomial logistic regression classifier on the concatenated word vectors of a

6 Levy and Goldberg (2014b) proposed a variant of the offset method called 3CosMult, which they show

to obtain better performances. However, since we are not interested in the best way to solve analogies but

rather in comparing different DSMs on such task, we have preferred to use the original approach.
7 https://github.com/kudkudak/word-embeddings-benchmarks
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context window of radius two around – and including – the target token. The

performance metric is the F-measure.

Semantic relation classification The task is to correctly identify the semantic

relation between two target nominals. The model is a Convolutional Neural

Network (CNN). The performance metric is accuracy.

Sentence sentiment classification The task is to classify movie reviews as either

positive or negative. The binary classification is carried out with the CNN by Kim

(2014). The performance metric is accuracy.

Document sentiment classification The task is to classify documents as either

positive or negative. The classifier is a Long Short–Term Memory (LSTM) network

with 100 hidden units. The performance metric is accuracy.

Subjectivity classification The task is to identify whether a sentence is a

subjective movie review or an objective plot summary. The model is a logistic

regression classifier and input sentences are represented with the sum of their

constituent word vectors. The performance metric is accuracy.

Natural language inference Given a premise–hypothesis pair, the task is to

identify whether the premise entails, contradicts, or neither entails nor contradicts

the hypothesis. The model is based on two LSTMs, one for the premise and one for

the hypothesis, whose final representations are concatenated and fed into a multi-

layer softmax classifier. The performance metric is accuracy.

The eight extrinsic performance measurements were computed with the

Linguistic Diagnostic Toolkit (Rogers et al., 2018).8

4.3 Analyses of the static DSMs

Each of the 44 static DSMs was tested on the 33 datasets, for a total of 1,452

experiments. Table 4 contains the best score and model for each benchmark. Top

performances are generally close to or better than state-of-the-art results for each

dataset, and replicate several trends reported in the literature. For instance, the

similarity datasets RW and SL-999 are much more challenging than WS-353 and

especially MEN. In turn, the verb-only SV-3500 is harder than SL-999, in which

nouns represent the lion’s share. Coming to the analogy completion task, MSR and

GOOGLE prove to be fairly easy. As observed by Church (2017), the performance

of the offset method drastically drops with the other datasets. Moreover, it does not

perform evenly on all analogy types. The top score by the FastText.w2.300 model is

0.73 on the syntactic subset of GOOGLE analogies, and 0.69 on the semantic one.

Differences are much stronger in BATS: The best performance on inflection and

derivation analogies is 0.43, against 0.16 on semantic analogies, and just 0.06 on

analogies based on lexicographic relations like hypernymy.

A crucial feature to notice in Table 4 is that there is no single ‘‘best model’’. In

fact, the performance of DSMs forms a very complex landscape, which we explore

here with statistical analyses that focus on the following objectives: (i) determining

the role played by the three main factors that define the experiments – model,

context, and vector dimensions – and their possible interactions; (ii) identifying

8 http://ldtoolkit.space.
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which DSMs are significantly different from each other; (iii) check how the task

type influences the performance of the DSMs.

Here, we investigate the role played by the different factors in the experiments.

First, we present the results of a global analysis (Sect. 4.3.1), and then we explore

the behavior of the DSMs in the different semantic tasks (Sect. 4.3.2). The global

analysis poses the problem of having a response (or dependent) variable that is

homogeneous across tasks in which performance is evaluated according to different

metrics (see Table 3). It is evident that an accuracy value of 0.5 has a very different

meaning compared to a correlation coefficient equal to 0.5. In order to address this

issue, we defined as response variable the position (rank) of a DSM in the

performance ranking of each task. If a model A has a higher accuracy than a model

Table 4 Best score and static DSM for each dataset

Intrinsic evaluation

Dataset Score Model Dataset Score Model

Synonymy Categorization

TOEFL 0.92 FastText.w2.2000 AP 0.75 SVD.synt.300

ESL 0.78 SVD.synt.2000 BATTIG 0.48 SGNS.synt.300

Similarity BATTIG-2010 1.00 SVD.synf.300

RG65 0.87 GloVe.w10.2000 ESSLLI-2008-1a 0.95 SVD.synf.300

RW 0.48 FastText.w2.300 ESSLLI-2008-2b 0.92 SGNS.w2.2000

SL-999 0.49 SVD.synt.2000 ESSLLI-2008-2c 0.75 SGNS.w2.2000

SV-3500 0.41 SVD.synt.2000 BLESS 0.88 SVD.synf.2000

WS-353 0.71 CBOW.w10.300 Analogy

WS-SIM 0.76 SVD.w2.2000 SAT 0.34 SVD.synt.300

Relatedness MSR 0.68 FastText.w2.300

WS-REL 0.66 CBOW.w10.300 GOOGLE 0.76 FastText.w2.300

MTURK 0.71 FastText.w2.300 SEMEVAL-2012 0.38 SVD.synt.300

MEN 0.79 CBOW.w10.300 WORDREP 0.27 FastText.w2.300

TR9856 0.17 FastText.w2.300 BATS 0.29 FastText.w2.300

Extrinsic evaluation

Dataset Task Score Model

CONLL-2003 Sequence labeling (POS tagging) 0.88 SGNS.synt.2000

CONLL-2003 Sequence labeling (chunking) 0.89 SGNS.synt.300

CONLL-2003 Sequence labeling (NER) 0.96 SGNS.w2.2000

SEMEVAL-2010 Semantic relation classification 0.78 SGNS.w2.2000

MR Sentence sentiment classification 0.78 SGNS.w2.2000

IMDB Document sentiment classification 0.82 FastText.w2.300

RT Subjectivity classification 0.91 FastText.w2.2000

SNLI Natural language inference 0.70 CBOW.w2.2000
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B in a task and a higher correlation than B in another task, in both cases we can say

that A is ‘‘better’’ than B. Therefore, given a task t, we ordered the performance

scores on t in a decreasing way, and each DSM was associated with a value

corresponding to its rank in the ordered list (e.g., the top DSM has rank 1, the

second best scoring DSM has rank 2, and so on). The response variable is therefore

defined on a scale from 1 to 44 (the number of DSMs tested on each task), in which

lower values correspond to better performances. This conversion causes a loss of

information on the distance between the scores, but normalizes the metrics both in

terms of meaning and in terms of the statistical characteristics of their distribution.

4.3.1 Global analysis

The behavior of DSMs greatly varies accross tasks, as illustrated in Fig. 7 in

Appendix A, which presents the global rank distribution of the 44 DSMs in all the

33 benchmarks. Model is the primary factor in determining the score of the

experiments, context has a more contained and nuanced role, while the role of

dimensions is marginal. This is confirmed by the Kruskal-Wallis rank sum non-

parametric test: models (H = 854.27, df=9, p \:001��) and contexts (H = 229.87,

df=4, p \:001��) show significant differences, while the vector dimension levels do

not (H = 3.14, df=2, p ¼ :21), as also shown in the boxplots in Fig. 1c. The only

cases in which vector size matters are RI models, whose 2, 000-dimensional

embeddings tend to perform better than 300-dimensional ones.

Looking at Fig. 1a, we can observe that there are three major groups of models:

(i) the best performing ones are the predict models SGNS, CBOW and FastText, (ii)

closely followed by the matrix models GloVe, SVD and PPMI, (iii) while the worst

performing models are RI, the document-based LSA, and in particular LDA. Dunn’s

tests (with Bonferroni correction) were carried out to identify which pairs of models

are statistically different. The p-values of these tests reported in Table 7 in

Appendix A draw a very elaborate picture that can not be reduced to the strict

contrast between predict and count models: (i) no difference exists between SGNS

and FastText; (ii) GloVe does not differ from CBOW and SVD, and the latter two

are only marginally different; (iii) interestingly, the PPMI explicit vectors do not

differ from their implicit counterparts reduced with SVD and only marginally differ

from GloVe; (iv) LSA does not differ from RI and RI-perm, which in turn do not

differ from LDA. With regard to context types, the best scores are for syntax-based

ones, either filtered or typed, while document is clearly the worst (Fig. 1b).

However, we note that syntax.filtered is equivalent to syntax.typed, and the latter

does not differ from window.2. On the other hand, window.10 and document are

significantly different from all other context types (see Table 8 Appendix A).

As a further analysis, we fit a regression tree model (Witten and Frank, 2005) to

the experiment performance scores (dependent variable) as a function of context,

model, and vector dimensions (independent variables or explanatory factors).
Regression tree analysis partitions the set of all the experiments in subsequent steps,

identifying for each of them the independent variable and the combinations of its

modalities that best explain the variability of the performance score. The tree
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growth process is blocked when the information gain becomes negligible. The

output tree of our statistical model is presented in Fig. 2. The variables used to

divide the experiments (nodes) are highlighted, step by step, together with the

modalities with respect to which the partition is made. The tree leaves are the most

uniform subgroups in terms of variability of the dependent variable with respect to

the explanatory factors.

The statistical model fit measured by the R2 coefficient is 0.65, which means that

model, context, and vector dimensions are able to explain just 65% of the overall

variability of the DSM performance (55% of which is explained by the first two

partitions, both associated with model type). The regression tree confirms the

relevant role played by the model factor. In the first partition, LDA, LSA, RI and

RI-perm are identified on the right branch of the tree, whose leaves are characterized

by the highest average score ranks, in particular for LDA (41.3), and RI and RI-

perm with size 300 (38.99). On the left branch, we find SGNS and FastText, which

(a) (b)

(c)

Fig. 1 Global DSM performance: a per model type, b per context type, c per vector dimensions
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in the case of syntax.filtered and window.2 contexts have the lowest average score

ranks (10.2). An interaction between model and context exists for CBOW, PPMI

and SVD, which have worse performances (i.e., higher score ranks) with window.10

contexts.

4.3.2 Analysis by type of semantic task

DSM performance greatly varies depending on the benchmark dataset and semantic

task. This is already evident from the spread out data distribution in the boxplots in

Fig. 7, and is further confirmed by the regression tree analysis: After introducing

task type and evaluation type (intrinsic vs. extrinsic) as further predictors, the

explained data variability increases from 65% to 72%. Therefore, the behavior of

DSMs is strongly affected by the semantic task they are tested on. In this section, we

investigate this issue by analysing the performance of the different model and

context types in the six tasks in which the datasets are grouped: synonymy,

similarity, relatedness, categorization, analogy, and extrinsic tasks (see Table 3).

Figure 3 reports the per-task rank distribution of model types. In general, the best

performances are obtained by SGNS and FastText, and the worst ones by LDA, RI,

Ri-perm, and LSA. Instead, PPMI, SVD, GloVe and CBOW produce more

intermediate and variable results: They are equivalent to, or better than, the top

models in some cases, worse in others. Table 9 in Appendix A shows the model

pairs whose performance is statistically different for each task, according to Dunn’s

test.

It is important to notice that in several cases the differences between models are

actually non significant: (i) CBOW never differs from SGNS and FastText; (ii) SVD

differs from predict models only in the analogy and extrinsic tasks (but for FastText

in the relatedness task too), and differs from PPMI for similarity and extrinsic tasks;

Fig. 2 Regression tree of DSMs
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(iii) GloVe never differs from SGNS and CBOW, and differs from FastText only for

relatedness. Interestingly, GloVe differs neither from PPMI explicit vectors, nor

from SVD (apart from the extrinsic task). If we exclude LDA, LSA and RI, which

are systematically undeperforming, models mostly differ in the extrinsic task (40%
of the overall cases), with the predict ones having a clear edge over the others.

Conversely, the performances in synonymy and categorization tasks are more

similar across models, with only the 6% of significant pairwise differences.

Figure 4 shows the per-task distribution of the various context types. Apart from

document contexts, which have the worst performance in every task, the other

contexts almost never produce significant differences, as confirmed by the results of

the Dunn’s tests reported in Table 10 in Appendix A. The only exception is the

categorization task, in which syntax-based collocates achieve significantly better

performances than window-based ones. Moreover, syntax.filtered improves over

window.10 in the similarity and the analogy tasks.

A further aspect we investigated is the correlation of DSM performance across

datasets. Results are illustrated in Fig. 8 in Appendix A. The dot size is proportional to

the Spearman correlation between the 33 datasets with respect to the performance of

the 44 DSMs: The higher the correlation between two datasets the more DSMs tend to

perform similarly on them. Intrinsic evaluation benchmarks are strongly correlated

with each other. The only exceptions are TR9856 and ESSLLI-2008-2b. The former

case probably depends on some idiosyncrasies of the dataset, as suggested by the fact

that the top performance on TR9856 is significantly lower than the ones on other

Fig. 3 DSM performance per semantic task: rank by model type
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relatedness benchmarks (see Table 4). ESSLI-2008-2b instead focuses on concrete-

abstract categorization, a task that targets a unique semantic dimension among the

tested benchmarks. Intrinsic datasets are strongly correlated with extrinsic ones too,

except for the sequence labeling tasks (POS tagging, chunking and NER), which have

weaker correlations with the other extrinsic datasets as well.

4.3.3 Interim summary

The statistical analyses of static DSMs show that the model type, more than the choice

of linguistic context, affects their performance, which is also strongly influenced by

the type of semantic task. Overall, the most effective distributional representations are

the embeddings produced by predict models and SVD or GloVe count DSMs, using

either window-based or syntactic collocates as contexts. Interestingly, explicit high-

dimensional PPMI vectors are also very competitive, especially in intrinsic tasks. This

fact is particularly important, because of the higher interpretability of the dimensions

of such distributional vectors. Among the top models, the variability across tasks is

very strong, and in most cases differences do not reach statistical significance. This

also confirms that the alleged superiority of predict DSMs over count ones is far from

being as clear-cut as the scientific literature would suggest.

5 Static DSMs vs. BERT

In this section, we compare the performance of static DSMs and contextual

embeddings. New neural language models are continuously appearing (Han et al.,

2021): They differ for the network architecture, training task and data, number of

Fig. 4 DSM performance per semantic task: rank by context type
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parameters, etc. A thorough analysis of the contextual embeddings generated by

these models is beyond the limits of the present paper. Therefore, we decided to

focus our study on BERT (Devlin et al., 2019), which is the most famous and

widely used representative of the new generation of contextual embeddings.

Moreover, previous studies have shown that BERT is generally able to outperform

more complex models, like GPT-2 (Ethayarajh, 2019; Bommasani et al., 2020;

Vulić et al., 2020).

Different methods to derive type embeddings from contextualized token vectors

can be used (Chronis and Erk, 2020). Following Bommasani et al. (2020), we

computed the type embedding of a target word t by averaging its BERT

representations:

t ¼ meanðtc1
; . . .; tcnÞ ð6Þ

where each context ci corresponds to a sentence s 2 S where the target occurs, and

tci is the token embedding for t in the context ci. S is a random sample of sentences

extracted from the same corpus used to train the static DSMs, to enhance model

comparability. The minimum sentence length was set at 4 tokens, and the maximum

length at 21 tokens. We extracted a maximum of 10 sentences for each target (Vulić

et al., 2020), but in a few cases less sentences were found in the corpus. The

selected sentences were then fed into the pretrained bert-large-uncased
model.9

The large version of BERT has 24 layers, each generating embeddings of 1024

dimensions. Since BERT layers encode different linguistic features (Jawahar et al.,

2019), we defined three kinds of type BERT embeddings:

BERT.F4—the sum of the embeddings from the first four layers;10

BERT.L4—the sum of the embeddings from the last four layers;

BERT.L—the embeddings from the last layer.

As they were trained on different corpora, 43:3% of the target lexemes of the static

DSMs are not part of the BERT vocabulary. BERT treats out-of-vocabulary tokens

in two different ways: By splitting them into subwords, or by considering the token

as ‘‘unknown’’ (i.e., it is labeled as [UNK]). In the first case, like Bommasani et al.

(2020) and Vulić et al. (2020), we summed the embeddings that encode the target

subwords. In the second case, the targets labelled as [UNK] are treated like any

other token. In fact, the context where a token occurs heavily affects its

representation in BERT, and ‘‘unknown’’ words make no exception. Therefore,

the resulting embedding of an [UNK] token is eventually quite similar to the

embedding of a word in the BERT vocabulary that occurs in the same context.

BERT type embeddings were evaluated in the intrinsic setting only (cf. Sect.

4.2.1). In fact, the extrinsic tasks involve in-context lexemes, and token embeddings

9 The tokenization and the embedding extraction were performed without stripping the accents from each

target word, using the Hugging Face Python library (Wolf et al., 2020).
10 Actually from layer 2 to layer 5, as we skipped the first layer, which corresponds to the context-

independent embedding of the input token.
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have already been shown to have the edge over type ones in such case. Our goal is

instead to evaluate how BERT type embeddings represent the semantic properties of

out-of-context words in the datasets used in the intrinsic evaluation semantic tasks.

Previous research reported that type embeddings derived from contextual DSMs,

in particular BERT, generally outperform the ones produced by static DSMs

(Ethayarajh, 2019; Bommasani et al., 2020; Vulić et al., 2020). However, the

picture emerging from our experiments is rather the opposite. As illustrated in

Table 5, static DSMs have a clear edge over BERT in most out-of-context semantic

tasks and datasets, with the only exception of SL-999, MSR, WORD-REP, and

BATS, but differences in the latter datasets are not significant. In some cases, one of

the BERT models is at most able to get close to the top-scoring static DSM, but in

all other datasets BERT lags behind up to 20 points. The good performance on SL-

999 suggests that BERT type embeddings are able to capture semantic similarity

fairly well, and in fact this is the task in which BERT performances are closest to

the ones of static DSMs.

In the analogy task, the highest score is obtained by BERT on MSR, but this

dataset only contains syntactic analogies. In GOOGLE, BERT.L4 achieves 0.66

accuracy (0.76 for static DSMs), but its performance is indeed much better in the

syntactic subset (0.71 BERT.L4; 0.73 FastText.w2.300), than in the semantic one

(0.55 BERT.L4; 0.69 FastText.w2.300). The situation with BATS is exactly the

same, with BERT performance on morphosyntactic analogies (0.52 BERT.L4; 0.43

FastText.w2.300) being much higher than on the semantic subset (0.11 BERT.L4;

0.11 FastText.w2.300). The generally better performance of static embeddings in

the analogy task is consistent with the results reported by Ushio et al. (2021).

One key aspect of deep learning models like BERT is understanding what

information is encoded in their various layers. In Table 5, we can notice the gain

brought by averaging the embeddings from several layers, as already shown by

Vulić et al. (2020). BERT.L, which is derived from the last and most contextualized

layer, is globally the worst performing model. This is in line with the analysis by

Carlsson et al. (2021), who demonstrate that masked language modeling introduces

a bias onto the final layers of the models, which become less suitable to use for

general semantic tasks. Carlsson et al. (2021) demonstrate that this bias can be

corrected using the Contrastive Tension technique. Bommasani et al. (2020) always

find best performances at earlier layers, whereas our picture is more varied:

BERT.L4 generally performs better than BERT.F4 in synonymy, similarity and

categorization tasks, but with relatedness datasets the behavior is reversed. This

suggests that the last layers might encode semantic dimensions useful to capture

attributional similarity. BERT behavior in the analogy completions task is instead

more diversified, but the highest score in MSR is obtained by BERT.F4, confirming

that the first layers tend to encode morphosyntactic information (Jawahar et al.

2019; Tenney et al. 2019).

The outcome of these experiments strongly contrasts with those reported in the

literature. What is the reason of such difference? The performances of our BERT

models are essentially in line with or better than the ones obtained by previous

works. For instance, the best BERT model in Bommasani et al. (2020) (see Table 1

in their paper) achieves correlations of 0.52 in SL-999 and 0.43 in SV-3500, against
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the BERT.L4 scores respectively of 0.55 and 0.40. The values in Ethayarajh (2019)

are even lower than ours. This indicates that the disappointing behavior of our

BERT models is not likely to depend on the way the type embeddings were

constructed from BERT layers. Research has shown that the performance of

contextual DSMs tend to increase with the number of contexts used to build the type

vectors. Therefore, we could expect that BERT scores would be higher, if we

sampled more sentences, as also reported by Bommasani et al. (2020). However, the

advantages brought by more contexts are not always significant: Vulić et al. (2020)

argue that the increment produced by sampling 100 sentences instead of 10, as we

did, is in most cases marginal.

On the other hand, the performance of the static DSMs used in previous

comparisons is often much lower than ours. The best model (i.e., word2vec) in

Bommasani et al. (2020) achieves 0.44 in SL-999, 0.68 in WS-353, 0.36 in SV-

3500, and 0.68 in RG65. These score are generally worse than the ones obtained by

our best static DSMs (see Table 5). Again, the values reported by Ethayarajh (2019)

for the static models are even lower. Therefore, we can argue that in those cases

BERT ‘‘wins’’ because it is compared with suboptimal static DSMs and the alleged

competitiveness or superiority of type embeddings derived from contextual DSMs

over static models might be more apparent than real. This resembles the case of the

Table 5 Best static DSM scores (see Table 4) compared with the performances of BERT type

embeddings

A comparative evaluation of three generations of Distributional Semantic Models

Dataset Static BERT.

F4

BERT.

L4

BERT.

L

Dataset Static BERT.

F4

BERT.

L4

BERT.

L

Synonymy Categorization

TOEFL 0.92 0.72 0.89 0.82 AP 0.75 0.52 0.63 0.55

ESL 0.78 0.60 0.60 0.64 BATTIG 0.48 0.22 0.40 0.35

Similarity BATTIG-

2010

1.00 0.67 0.77 0.73

RG65 0.87 0.74 0.81 0.78 ESSLLI-

2008-1a

0.95 0.68 0.73 0.70

RW 0.48 0.37 0.48 0.36 ESSLLI-

2008-2b

0.92 0.82 0.75 0.75

SL-999 0.49 0.49 0.55 0.50 ESSLLI-

2008-2c

0.75 0.64 0.62 0.58

SV-3500 0.41 0.34 0.40 0.27 BLESS 0.88 0.60 0.73 0.70

WS-353 0.71 0.61 0.62 0.57 Analogy

WS-SIM 0.76 0.67 0.70 0.63 SAT 0.34 0.24 0.24 0.21

Relatedness MSR 0.68 0.76 0.69 0.68

WS-REL 0.66 0.56 0.51 0.47 GOOGLE 0.76 0.38 0.66 0.64

MTURK 0.71 0.59 0.56 0.52 SEMEVAL-

2012

0.38 0.33 0.34 0.30

MEN 0.79 0.70 0.69 0.64 WORDREP 0.27 0.22 0.28 0.22

TR9856 0.17 0.13 0.14 0.13 BATS 0.29 0.30 0.33 0.34
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debate between count vs. predict model, in which the advantage of the latter

disappears when count DSMs are optimized (Levy et al., 2015). Similarly, when

properly tuned, static DSMs are superior to BERT, when tested in out-of-context

semantic tasks.

6 Representation similarity analysis of semantic spaces

One general shortcoming of the standard way to evaluate DSMs is that it is based on

testing their performances on benchmark datasets that, despite their increasing size,

only cover a limited portion of a model vocabulary (e.g., the large MEN includes

just 751 word types). Apart from few exceptions, the selection criteria of test items

are not explicit, and do not take into consideration or do not provide information

about important factors such as word frequency and POS. As we saw in the previous

section, the variance among datasets is often extremely large, even within the same

semantic task, and this might be due to differences in sampling and rating criteria.

We present here an alternative approach that explores the shape of the semantic

spaces produced by DSMs with Representational Similarity Analysis (RSA)

(Kriegeskorte et al., 2008; Kriegeskorte and Kievit, 2013), which has been recently

adopted in NLP to analyze the distributed representations of neural networks

(Abdou et al., 2019; Abnar et al., 2019; Chrupała and Alishahi, 2019). RSA is a

method originally developed in cognitive neuroscience to establish a relationship

between a set of stimuli and their brain activations. These are both represented as

points in a similarity space (e.g., the stimuli can be represented in terms of their

mutual similarity ratings) and are related in terms of the second-order isomorphism
(Edelman,, 1998) determined by the similarity of the similarity structure of the two

spaces. Therefore, RSA is a methodology to compare two geometrical represen-

tations R1 and R2 of a set of data: The similarity between R1 and R2 depends on how

similar the similarity relations among the data according to R1 are to the similarity

relations according to R2. As DSMs produce geometrical representations of the

lexicon, RSA can be applied to investigate the similarity of their semantic spaces by

measuring the correlation between the pairwise similarity relations among the

lexical items in different spaces.11

We performed RSA on 27 static and contextualized DSMs tested in Sect. 4. This

set includes the 300-dimensional models, the PPMI explicit vectors, the RI and RI-

perm 2000-dimensional embeddings, which we chose instead of the smaller ones

because of their better performance, and the three BERT models. Given a

vocabulary V and a DSM M, the semantic space representing V corresponds to the

matrix M whose rows are the vectors of the targets t 2 V . The RSA of the selected

DSMs consisted of the following steps:12

11 RSA is akin to the topological analysis used by Brighton and Kirby (2006) and Ren et al. (2020) to

measure the convergence of semantic spaces in the emergent communication between artificial agents.
12 We performed RSA with the Python library Neurora: https://neurora.github.io/NeuroRA/.
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– for each DSM Mk generating the semantic space Mk, we built the representation
similarity matrix RSMk

jV j�jV j such that each entry rsmi;j contains the cosine

similarity between the vectors ti and tj of the lexical items ti, tj 2 V;13

– for each pair of DSMs M1 and M2, we measured their similarity with the

Spearman correlation between RSM1 and RSM2.

As the large size of our DSM vocabulary (more than 345, 000 words) made the

construction of one global similarity matrix computationally too expensive, we

randomly sampled 100 disjoint sets of 1, 000 lexemes and we ran separate analyses

on each sample (Sect. 6.1). Further analyses were performed on portions of the

DSM vocabulary differing for word frequency (Sect. 6.2) and POS (Sect. 6.3) in the

training corpus. The similarity between the semantic spaces produced by two DSMs

is the average Spearman correlation between their respective RSMs of the various

samples.

6.1 RSA of the global semantic spaces

As we can see from the correlation plot in Fig. 5, the global semantic spaces

produced by the various DSMs show significant differences, as only few of them

have strong correlations. The mean between-DSM Spearman q is 0.15 (median =

0.11), with a high variability (sd = 0.21). The similarity between representations is

mainly determined by the model type, once again confirming the far greater

importance of this factor than the linguistic context in shaping distributional

semantic spaces. The predict DSMs (SGNS, CBOW, and FastText) form a dense

cluster of mutually similar spaces. They also have a moderate correlation with

window-based SVD. Syntax-based SGNS is particularly close to GloVe and LDA.

The latter and especially RI are the real outliers of the overall group, since their

lexical spaces have very low similarity with any other DSM. Within the same model

type, syntax-based spaces predictably tend to be quite similar to narrow window

ones. The contextualized BERT models generate semantic spaces that are rather

different from static ones. A moderate correlation exists only between BERT.F4 and

GloVe, and between BERT.L4, PPMI and some of the SGNS models. Moreover, the

BERT.F4 space is quite different from the ones generated by the last layers,

probably due to their higher contextualization.

6.2 RSA of semantic subspaces selected according to the target frequency

Further RSAs were then performed on subsets of the DSM vocabulary sampled

according to their frequency in the training corpus:

High Frequency (RSA-HF) the 1,000 most frequent lexemes;

13 Notice that the original RSA method uses dissimilarity matrices whose entries contain dissimilarity

measures between the items.
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Medium Frequency (RSA-MF) 10 disjoint random samples of 1,000 lexemes,

selected among those with frequency greater than 500, except for the 1,000 most

frequent ones;

Low Frequency (RSA-LF) 10 disjoint random samples of 1,000 words, selected

among those with frequency from 100 up to 500.

The results of these analyses are reported in Fig. 6. It is particularly interesting to

notice the great difference in the similarities among semantic spaces depending on

the frequency range of the target lexemes. In RSA-HF, most semantic spaces are

strongly correlated to each other, apart from few exceptions: The average

correlation (mean q = 0.44; median = 0.40; sd = 0.22) is in fact significantly

higher than the one of the global spaces. Even those models, like RI and LDA, that

behave like outliers in the general RSA represent the high frequency semantic space

very similarly to the other DSMs. Contextual models also increase their similarity

with static ones in the high frequency range. The between-model correlations in

Fig. 5 Average Spearman correlation between semantic spaces computed with RSA on 100 random
samples of 1, 000 words. Dot color marks the correlation sign and dot size its magnitude
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Fig. 6 Spearman correlation between semantic spaces computed with RSA on a high, b medium, c and
low frequency target words. Dot color marks the correlation sign (black positive, white negative), and dot
size its magnitude
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RSA-MF (mean q = 0.20; median = 0.15; sd = 0.20) are significantly lower than

RSA-HF (Wilcoxon test: V ¼ 58843, p-value \0:001). A further decrease occurs

with low frequency lexemes (mean q = 0.17; median = 0.12; sd = 0.19; Wilcoxon

test: V ¼ 10661, p-value \0:001). In this latter case, the effect of model type is

particularly strong. The behavior of GloVe is exemplary: Its spaces are very close to

the SVD and predict ones for high frequency words, but in the low frequency range

they have some moderate correlation only with the latter family of models.

Interestingly, in RSA-MF and RSA-LF (window-based) SGNS and FastText are

more similar to PPMI than to other count models, probably due to the close link

between PPMI and negative sampling proved by Levy and Goldberg (2014c).

It is worth mentioning the peculiar behavior of LDA, which we had to exclude

from RSA-LF because most low frequency targets are represented exactly with the

same embedding formed by very small values, hence they are not discriminated by

the model. We hypothesize that this is due to the way in which word embeddings are

defined in Topic Models. As described in Sect. 4.1, given a set of z1; . . .; zk topics,

LDA finds the most important words that characterize a topic zi. Each target is then

represented with a topic vector ð/1; . . .;/kÞ, such that /i ¼ pðtjziÞ. The words that

are not relevant to characterize any topic, have low probabilities in all of them.

Therefore, these same lexemes are eventually represented by identical topic vectors.

The problem is that the size of this phenomenon is actually huge: The LDA.300

Fig. 6 continued
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model has 305, 050 targets with the same topic vector, about 88% of its total

vocabulary. Low frequency words are especially affected, probably because they do

not appear among the most likely words of any topic, as they occur few times in the

documents used as contexts by LDA. This might also explain the systematically low

performance of LDA in quantitative evaluation. Moreover, it raises several doubts

on its adequacy to build word embeddings in general. Like LSA, Topic Models were

originally designed for the semantic analysis of document collections, and were then

turned into lexical models on the assumption that, just as documents can be

represented with their word distributions, lexical items can be represented with the

documents they occur in. However, while this conversion from document to lexical

representation works fairly well for LSA, it is eventually problematic for Topic

Models.

6.3 RSA of semantic subspaces selected according to the target POS

A third group of RSAs was performed on subsets of the DSM vocabulary sampled

according to their POS in the training corpus. First, we selected all the words with

frequency greater than 500, to avoid the idiosyncrasies produced by low frequency

items. Since the DSM targets are not POS-disambiguated, we univocally assigned

each selected lexeme to either the noun, verb, or adjective class, if at least 90% of

the occurrences of that word in the corpus was tagged with that class. This way, it is

likely that the vector of a potentially ambiguous word encodes the distributional

properties of its majority POS. At the end of this process we obtained 14, 893

common nouns, 7,780 verbs, and 5,311 adjectives. Given the role of target

frequency in shaping the semantic spaces, we then split each set in two subsets:

High frequency sets are composed by the first 1,000 most frequent targets of each

POS, whereas medium frequency sets include the remaining targets. We randomly

selected 4 disjoint samples of 1,000 targets from the medium frequency set of each

POS (notice that almost all adjectives are represented in these selected samples).

The correlation plots of the RSAs on the POS samples are reported in Figs. 9, 10 and

11 in Appendix B.

This analysis shows the effect of frequency in even a clearer way, since for all

POS there is a drastic decrease in the model correlations from the high to the

medium frequency range, with a symmetric increase in their variability, as shown in

Table 6. At the same time, important differences among POS emerge. In the high

frequency range, verbs (Wilcoxon test: V ¼ 15830, p-value \0:001) and adjectives

(Wilcoxon test: V ¼ 19473, p-value \0:001) have a significant higher between-

DSM similarity than nouns, and this gap further increases with medium frequency

lexical items (verbs instead do not significantly differ from adjectives). This means

that the semantic spaces produced by the various DSMs differ much more in the

case of nouns than in the case of verbs or adjectives.
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7 Discussion and conclusions

In this paper, we have presented a comparative evaluation of distributional

representations that spans three generations of DSMs, from count to predict models,

up to the most recent contextual embeddings. The results of our experiments

confirm the highly complex and multifaceted behaviour of DSMs. We summarize

here the most important findings of our experiments and we draw some general

conclusions.

The model is the crucial factor The method to build distributional vectors is the

main factor responsible for global and task-based variability of static DSMs.

Count or predict? While RI and LDA always lag behind, predict models are

prima facie the best perfoming DSMs. However, in most cases they are not

significantly better than SVD or GloVe embeddings, or even explicit PPMI vectors.

This means that the alleged superiority of predict models (Baroni et al., 2014;

Mandera et al., 2017) is more apparent than real and surely not ubiquitous. When

properly optimized, for instance following the suggestions by Levy et al. (2015) like

in our models, SVD embeddings are as good as predict ones, at least in most

intrinsic tasks. There can be other reasons to prefer predict DSMs, such as

incrementality or computational efficiency in processing large corpora, but not the

quality itself of the semantic space.

Static or contextual? Type vectors derived from the contextual embeddings

generated by BERT largely underperform. Recent research has emphasized that

their reported good performance makes contextual embeddings highly competitive

with static ones (Bommasani et al., 2020; Vulić et al., 2020). Our experiments did

not replicate such optimal behavior, and rather prompt the reverse claim: Static
embeddings are still competitive with respect to contextual embeddings (at least
BERT ones), especially given the simplicity of the former vis-à-vis the complexity

of Transformers and the much greater order of magnitude of the computational and

data resources needed to train contextual embeddings. In this paper, we have tested

just one type of contextual DSMs and a more thorough comparison with the

representations produced by other neural language models is surely needed to

strengthen and fully generalize this conclusion. Moreover, it is possible that more

Table 6 Between-DSM

correlations with respect to POS

and frequency

POS Frequency Mean q Median q sd

Nouns High 0.53 0.51 0.17

Verbs High 0.56 0.53 0.17

Adjectives High 0.55 0.54 0.16

Nouns Medium 0.28 0.25 0.23

Verbs Medium 0.37 0.36 0.25

Adjectives Medium 0.38 0.38 0.24
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sophisticated methods of building type embeddings, like the one by Chronis and Erk

(2020) with sense clustering, or sampling a larger number of contexts might indeed

improve the performances of such models, but this would also further increase the

complexity of the type embedding generation process. Therefore, static DSMs still

appear as the best and most sustainable option for out-of-context semantic tasks.

The role of linguistic contexts The effect of context type is more limited, with the

only exception of documents, which are always underperforming. As noticed by

Lapesa and Evert (2017), syntax-based contexts are very similar to window-based

ones, especially with narrow windows. However, in categorization tasks syntax does

provide significant improvements, suggesting that syntactic co-occurrences encode

important information about semantic classes. This is consistent with the findings by

Chersoni et al. (2017) about the advantage of syntax-based DSMs in semantic tasks

modelling predicate-argument typicality. Therefore, syntax-based contexts have an

added value over window-based ones, but this is not ubiquitous.

The role of vector dimensions Augmenting the embedding size does not produce

significant improvements. The only exceptions are RI models, probably because

having more dimensions increases the orthogonality of the random vectors.

Tasks do matter The effect of tasks on DSM performance is extremely high. This

means that, for DSM evaluation to be truly reliable, it should always be performed

on a range as large as possible of semantic tasks and datasets.

Analogies must be handled with care The ‘‘linguistic regularities’’ (Mikolov et al.,

2013c) that can be discovered with the offset method are quite limited, except for

morphosyntactic analogies. This confirms the doubts raised in several studies

(Linzen, 2016; Rogers et al., 2017; Schluter, 2018; Peterson et al., 2020) about the

general soundness of such a method to model analogical similarity. While analogy

targets an important aspect of semantic similarity, extreme caution should be

exercised in using the analogy completion task and its solution with the offset

method as a benchmark to evaluate DSMs.

Intrinsic vs. extrinsic evaluation DSM performance on intrinsic tasks correlate with

their performance on extrinsic tasks, except for the sequence labelling ones,

replicating the findings of Rogers et al. (2018). Differently from what has been

sometimes claimed in the literature, this strong correlation indicates that intrinsic

evaluation can also be informative about the performance of distributional vectors

when embedded in downstream NLP applications. On the other hand, not all

extrinsic tasks are equally suitable to evaluate DSMs, as the peculiar behavior of

POS, NER and chunking seems to show.

Besides using the traditional approach to DSM evaluation, we have introduced

RSA as a task-independent method to compare and explore the representation of the

lexical semantic space produced by the various models. In particular, we have found

that models, both static and contextualized ones, produce often dramatically

different semantic spaces for low frequency words, while for high frequency items

the correlation among them is extremely high. This suggests that the main locus of

1300 A. Lenci et al.

123



variation among the methods to build distributional representations might reside in

how they cope with data sparseness and are able to extract information when the

number of occurrences is more limited. In the case of static embeddings, we applied

to all DSMs the smoothing and optimization procedure proposed by Levy et al.

(2015), but count and predict models still behave very differently in the low

frequency range. This indicates that such differences might actually depend on some

intrinsic features of the algorithms to build word embeddings, rather than in the

setting of their hyperparameters. Overall, these results highlight the strong

‘‘instability’’ (Antoniak and Mimno, 2018) of distributional semantic spaces,

especially when the target frequency is not high: Models can produce substantially

divergent representations of the lexicon, even when trained on the same corpus data

with highly comparable settings. The DSM instability at low frequencies is

particularly critical for their application in low-resource settings in linguistics,

digital humanities (e.g., diachronic research), and for studies on language

acquisition. Investigating which DSMs are most suited to represent the content of

low-frequency lexemes is an important and still open research question.

Significant variations also occur at the level of POS too. Quite unexpectedly, the

category where DSM spaces differ most are nouns. This finding deserves future

investigations to understand the source of such differences, and to carry out more

fine-grained analyses within nouns (e.g., zooming in on particular subclasses, such

as abstract vs. concrete ones). These analyses reveal that frequency and POS

strongly affect the shape of distributional semantic spaces and must therefore be

carefully considered when comparing DSMs.

We conclude this paper with one last observation. In more than thirty years,

distributional semantics has undoubtedly been making enormous progresses, since

the performance of DSMs as well as the range of their applications have greatly

increased. On the other hand, we might argue that this improvement is mostly due to

better optimized models or to a more efficient processing of huge amounts of

training data, rather than to a real breakthrough in the methods to distil semantic

information from distributional data. In fact, under closer scrutiny, the most recent

and sophisticated algorithms have not produced dramatic advances with respect to

more traditional ones. This raises further general questions that we leave to future

research: Are we reaching the limits of distributional semantics? How to fill the gap

between current computational models and the human ability to learn word meaning

from the statistical analysis of the linguistic input?

Authors contributions AL: experiment design and coordination, data analysis, paper drafting; MS:

experiment design and coordination, support in writing the paper; PJ: processing the corpora, training the

DSMs, intrinsic evaluation, support in writing the paper; ACG: extrinsic evaluation, support in writing the

paper; MM: Representational Similarity Analysis, support in writing the paper.

Funding Open access funding provided by Università di Pisa within the CRUI-CARE Agreement.
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Appendixes

A: Statistical analyses of static DSMs

See Figs. 7 and 8, Table 7, 8, 9 and 10.

Fig. 7 Rank distribution of the performance of the 44 static DSMs on the 25 intrinsic and 8 extrinsic
datasets (cf. Sect. 4.2)
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Fig. 8 Spearman correlation between datasets. The bigger is the dot size the higher is the correlation

Table 7 P-values of Dunn’s tests for multiple comparisons of model types

CBOW FastText GloVe LDA LSA PPMI RI RI-perm SGNS

FastText 0.03

GloVe 1 \0:001

LDA \0:001 \0:001 \0:001

LSA \0:001 \0:001 \0:001 \0:001

PPMI \0:001 \0:001 0.036 \0:001 0.008

RI \0:001 \0:001 \0:001 0.508 0.379 \0:001

RI-perm \0:001 \0:001 \0:001 1 0.068 \0:001 1

SGNS 0.009 1 \0:001 \0:001 \0:001 \0:001 \0:001 \0:001

SVD 0.037 \0:001 1 \0:001 \0:001 1 \0:001 \0:001 \0:001
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Table 8 P-values of Dunn’s tests for multiple comparisons of context types

syntax.filtered syntax.typed document window.10

syntax.typed 1

document \0:001 \0:001

window.10 \0:001 \0:001 \0:001

window.2 \0:001 0.356 \0:001 0.001

Table 9 Dunn’s tests for multiple comparisons of model types for each semantic task

Task PPMI SVD LSA LDA GloVe RI

SVD Synonymy �
Similarity �
Relatedness �
Categorization �
Analogy �
Extrinsic � SVD

LSA Synonymy � �
Similarity � �
Relatedness � �
Categorization � �
Analogy � �
Extrinsic � � LSA

LDA Synonymy � � �
Similarity � � �
Relatedness � � �
Categorization � � �
Analogy � � �
Extrinsic � � � LDA

GloVe Synonymy � � � �
Similarity � � � �
Relatedness � � � �
Categorization � � � �
Analogy � � � �
Extrinsic � � � � GloVe

RI Synonymy � � � � �
Similarity � � � � �
Relatedness � � � � �
Categorization � � � � �
Analogy � � � � �
Extrinsic � � � � �
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Table 9 continued

Task PPMI SVD LSA LDA GloVe RI

RI-perm Synonymy � � � � � �
Similarity � � � � � �
Relatedness � � � � � �
Categorization � � � � � �
Analogy � � � � � �
Extrinsic � � � � � � RI-perm

SGNS Synonymy � � � � � � �
Similarity � � � � � � �
Relatedness � � � � � � �
Categorization � � � � � � �
Analogy � � � � � � �
extrinsic � � � � � � � SGNS

CBOW synonymy � � � � � � � �
Similarity � � � � � � � �
Relatedness � � � � � � � �
Categorization � � � � � � � �
Analogy � � � � � � � �
Extrinsic � � � � � � � � CBOW

FastText Synonymy � � � � � � � � �
Similarity � � � � � � � � �
Relatedness � � � � � � � � �
Categorization � � � � � � � � �
Analogy � � � � � � � � �
Extrinsic � � � � � � � � �

Black dots mark significantly different models (p\0:05)
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Table 10 Dunn’s tests for multiple comparisons of context types for each semantic task

Task window.2

window.10 Synonymy �
Similarity �
Relatedness �
Categorization �
Analogy �
Extrinsic � window.10

syntax.filtered Synonymy � �
Similarity � �
Relatedness � �
Categorization � �
Analogy � �
Extrinsic � � syntax.filtered

syntax.typed Synonymy � � �
Similarity � � �
Relatedness � � �
Categorization � � �
Analogy � � �
Extrinsic � � � syntax.typed

document Synonymy � � � �
Similarity � � � �
Relatedness � � � �
Categorization � � � �
Analogy � � � �
Extrinsic � � � �

Black dots mark significantly different contexts (p\0:05)
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B: RSAs on target samples selected according to their POS

See Figs. 9, 10 and 11.

Fig. 9 Spearman correlation between semantic spaces computed with RSA on high frequency (a) and
medium frequency (b) nouns. Dot color marks the correlation sign (black positive, white negative), and
dot size its magnitude
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Fig. 10 Spearman correlation between semantic spaces computed with RSA on high frequency (a) and medium
frequency (b) verbs. Dot color marks the correlation sign (black positive, white negative), and dot size its magnitude
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Fig. 11 Spearman correlation between semantic spaces computed with RSA on high frequency (a) and
medium frequency (b) adjectives. Dot color marks the correlation sign (black positive, white negative),
and dot size its magnitude
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