
14 The life cycle of knowledge

Alessandro Lenci

14.1 Introduction

Due to its prima facie abstract character, we are often lead to conceive knowl-
edge as it were a changeless entity inhabiting an extra-time realm, much alike
Plato’s World of Ideas. As a consequence, we tend to forget or to underestimate
the crucial fact that knowledge has its own life cycle too, not very differently
from anything else in the natural Universe. Knowledge is created. It changes
through time. It reproduces itself, generating new knowledge. Knowledge dies
too, as proved by the fact that our knowledge about artifacts, practices, people
or places can get lost or disappear forever. In technical domains (such as for
instance biology, medicine, computer science, but also agriculture, as claimed by
Kawtrakul and Imsombut (Chapter 17 this volume)), the rate of knowledge change
can be very high, with concepts becoming ’obsolete’ because of new technolog-
ical advances, which in turn may induce complex reorganizations or expansions
of the knowledge system. It goes without saying that similar processes apply to
ontologies as well, insofar as they are formal systems aiming at representing a
certain body of knowledge, thereby being closely tied to its destiny.

The dynamics of knowledge and of the ontologies that represent it depend on
its contexts of use. Knowledge is created or acquired for some purpose, i.e. to
be used as a tool to achieve a certain goal or to perform a particular task. Use
also changes our knowledge about entities and processes and consequently leads
us to revise our ontological systems. Moreover, the employ of some body of
knowledge to perform a task may produce new knowledge that has to be added
to our ontologies, possibly resulting in a major revision of their structure, if some
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breakthrough in the knowledge system has occurred. Actually, this is usually the
main or ultimate purpose for us to carry out the task itself.

This book deals with ontological and lexical knowledge resources. The ontolex
interface (See chapter 10 this volume) is an attempt to answer to the increasing
need of modeling the complex interrelationship between lexicons and ontologies,
which are more and more assuming the form of rich ontolexical resources. I will
use this term to stress the importance of investigating the substantial areas of over-
lapping between ontologies and lexicons, as a step toward a better understanding
of their individual characters. In this chapter, I will focus on the interaction
between ontolexical knowledge systems and a specific context of use that shapes
their dynamics, i.e. natural language processing (NLP). Therefore, methods,
tools and applications for NLP are here analyzed under the perspective of how
they affect the life cycle of knowledge.

There is a bidirectional link between NLP and ontolexical resources. First of
all, NLP tools and applications are intensive knowledge users, i.e. they have to
access large amounts of different types of knowledge to carry out the tasks they
are designed for. This raises the issue of how the particular goals of NLP systems
act as constraints on ontological systems, so that the type and the organization of
knowledge can optimally comply with the needs of NLP tasks. Secondly, NLP
tools and applications are also powerful knowledge creators, i.e. they can be used
to create and modify ontolexical resources, for instance by allowing the bits of
knowledge to be represented in such resources to be carved out of the linguistic
structures that encode them in natural language texts. Despite their prima facie
differences, the two roles of NLP systems as knowledge users and knowledge
creators must be conceived as deeply interrelated one to the other, actually being
two sides of the same coin. This integrated view is not an optional one, but rather
it represents the essential condition for NLP systems on the one hand to exploit at
their best the incredible potential offered by large-scale ontolexical resources, and
on the other hand to boost and enhance the process itself of knowledge creation.

14.2 Using ontolexical knowledge in NLP

From Information Extraction to Question Answering, the final goal of most
NLP systems and applications is to access the information content of texts through
the interpretation of their linguistic structures. To carry out their tasks, NLP
systems need to know the relevant pieces of knowledge to be identified in texts,
as well as how this knowledge is encoded in linguistic expressions. The role of
ontolexical resources is to provide NLP systems with these two crucial types of
information. Besides, there is a further important factor that assigns a key role
to ontolexical knowledge in NLP, a factor that is not directly dependent on the
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specific system goals, but rather derives from the core principles of language.
In fact, much of the constraints natural language grammars obey to are lexical-
ized. That is to say, many aspects of complex linguistic structures depend on
the properties of the lexical items that compose them. The paradigmatic prop-
erties of lexical items – i.e. the classes to which they belong in virtue of their
morphosyntactic and semantic properties – constrain their possible syntagmatic
distributional properties – i.e. the range of linguistic contexts in which they can
appear. Thus, ontolexical knowledge can not but playing a prominent role in most
NLP architectures. Although there are approaches that dispense with this type of
information altogether, the addition of ontolexical information usually proves to
be a necessary step to enhance the system performances in tackling the challenges
set by natural language.

In the sections below, I will focus on four major use contexts for ontolexical
knowledge in NLP: semantic typing, semantic similarity and relatedness, infer-
ence, and argument structure. They represent some of the most important ways
in which systems typically employ the information in ontolexical resources to
achieve their specific applicative goals. While applications often change quite
rapidly – following the waves of market needs or of technological developments
– these use contexts provide us with general vantage points from which to observe
the role of different aspects of semantic information in NLP, as well as the main
problems and challenges that knowledge intensive processing of natural language
must face.

14.2.1 Semantic typing

The primary aim of ontolexical resources is to characterize the semantic types
of linguistic expressions, i.e. the classes to which linguistic expressions belong
in virtue of their meanings. Types can be regarded as formal, symbolic ways
of identifying the concepts expressed by linguistic expressions. To the extent that
meanings are related to entities in the world, semantic types also correspond to the
categories of entities referred to by linguistic items. By assigning a lexical item to
a semantic type we thus characterize and focus on specific aspects of its semantic
space. For instance, the type AIRPLANE can be used to explicitly represent one of
the senses expressed by the word ’plane’.

Ontologies and lexicons represent key resources for semantic typing, i.e. the
process of automatically identifying the semantic types of linguistic expressions
in texts. As Pustejovsky et al. (2002) rightly claim, semantic typing is the
backbone and prerequisite of most NLP applications to achieve content-based
access to texts. For example, the goal of Information Extraction is to identify
relevant facts from texts. Facts are typically defined by events involving a certain
number of entities belonging to different categories (e.g. humans, locations,
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proteins, vehicles, etc.). The instances of the semantic categories relevant for the
application target domain must be identified in texts, and this amounts to assigning
the proper semantic type to their linguistic descriptors. Take the following pair
of sentences: The new medicine is highly effective against pneumonia. This
illness can still be quite dangerous. An Information Extraction system operating
in the bio-medical domain might need to understand that the word ’pneumonia’
belongs to the semantic type DISEASE and that therefore the first sentence actually
mentions a fact or event concerning this category of entities. Similarly, type
identification is also critical to resolve the anaphorical link between the noun
phrase this illness in the latter sentence and ’pneumonia’ in the former one.

Besides the semantic typing of entities, the problem of identifying the relations
linking these entities is gaining increasing attention (Nastase and Szpakowicz,
2003; Girju et al., 2005; Turney, 2006). Semantic relations can be explicitly
encoded by lexical items, such as verbs or relational nouns, but they can also be
implicitly expressed by linguistic constructions. For instance, the proper inter-
pretation of noun compounds require the understanding of the specific relation
holding between their constituent words, such as material (’apple pie’), loca-
tion (’lung cancer’) or meronymy (’door handle’). Conversely, the semantic
relation of causation , besides being explicitly expressed by lexical items such as
’cause’ or ’provoke’, is also implicitly encoded by compound nouns such as ’food
infection’ or ’flu virus’. Most of these relations are represented in ontolexicons,
which are therefore often used as key knowledge resources for automatic semantic
relation identification.

As it clearly emerges from these few examples, semantic typing is actually a
very complex task, which in turn presents a high spectrum of possible variations,
depending on the applicative and the domain specific needs. In any case, it
crucially relies on the identification of the semantic potential of lexical items, and
more precisely on the possibility to characterize the way linguistic constructions
express a certain system of semantic categories and the relations among these
categories. This is the reason why semantic typing represents a crucial use context
for ontolexical resources.

14.2.2 Semantic similarity and relatedness

Natural language expressions can share different aspects of their meanings, that
is to say they can be semantically similar at various degrees. Semantic similarity
is a very loosely defined notion, actually forming a wide spectrum of variation
spanning from the full– or near–synonymy of pairs such as ’king’–’monarch’, to
much wider associative links. Budanitsky and Hirst (2006) (following Resnik
(1995)) distinguish semantic similar pairs such as ’horse’–’pony’ from semantic
related ones, such as ’hot’–’cold’ or ’handle’–’door’. While similar pairs contain
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words referring to entities that share a certain number of salient ’features’ (e.g.
shape, position in a taxonomy, functionality, etc.), related pairs are formed by
words that are connected by some type of semantic or associative relation –
such as antonymy, meronymy, frequent co-occurrence – without being necessarily
similar themselves (e.g. ’handle’–’door’). Parallel distinctions are typically
assumed in the psycholinguistic literature, where the notion of semantic similarity
plays a crucial role in the explanation of phenomena such as priming effects (Moss
et al., 1995).

A huge literature exists in linguistics, philosophy and cognitive science devoted
to the many conundrums hidden behind such a prima facie natural aspect of
semantic organization. The problem is that, while the fact that ’dog’ is more
semantically similar to ’cat’ than to ’car’ appears to us as more or less incontro-
vertible, turning this intuition into effective and formal criteria to determine the
degree of semantic similarity between two words is extremely hard. Yet, measur-
ing the semantic similarity (or relatedness) between words has a key importance
in any applicative context, such as Word Sense Disambiguation, Information
Extraction and Retrieval, Machine Translation, etc.

Ontolexical systems play an important role in computing semantic similarity
(relatedness). Besides the fact that most of these resources explicitly contain
lists of synonymous terms (like the synsets in WordNet), groups of similar words
can be explicitly represented by assigning them to the same semantic type. For
instance, ’airplane’, ’boat’, ’car’ and ’bus’ can all be assigned to the type VEHI-
CLE, thereby making explicit the fact that they belong to the same paradigmatic
class as determined by key features of the meaning they share (e.g. they can
move, are designed for transportation, can be driven, etc.). If conversely ’cat’
and ’dog’ are assigned to the type ANIMAL, the ’dissimilarity’ between ’dog’
and ’car’ immediately descends from their belonging to different semantic types.
Even more crucially, it is the structure itself of the ontology that can be used to
compute the degree of semantic similarity (relatedness) between words. In fact,
semantic similarity (dissimilarity) between two words can be formally defined
in terms of the closeness (distance) of their types in the semantic space defined
by the ontology. Various types of metrics have been proposed in the literature
that exploit the path (and types) of relations connecting two concepts to measure
their semantic proximity. Budanitsky and Hirst (2006) provides an interesting
survey and evaluation of different measures of semantic relatedness based on the
topology of relations in WordNet.

14.2.3 Inference

The main function of the human conceptual system is to provide the basis for
drawing inferences about the entities that belong to a certain category (Murphy,
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2002). In a parallel fashion, this inferential ability is a characteristic property of
our lexical competence: knowing the meaning of a word is also being able to
draw some inferences from it (Marconi, 1997). For instance, if we understand the
meaning of the sentence Tweety is a bird, we also infer that Tweety is an animal
and that it is very likely to fly. Similarly, the meaning of the word ’kill’ in the
sentence The man killed the gorp allows us to infer that the ’gorp’ – whatever this
entity might be – was very likely to be a living being before the occurrence of
this event, and became dead afterward. Inferences differ with respect to their type
and strength, some of them being logical entailments (as in the case of a cat being
an animal), others having instead just a probabilistic value. In fact, not all birds
fly, but only the most prototypical ones. In either case, inferences depend on the
properties and on the organization of our system of concepts and meanings.

Ontolexical resources represent the most direct way to explicitly capture the
inferential relations between concepts and semantic types. Usually, they are not
inferential system per se, but rather they are representational resources on which
such systems can be defined. The definition of the classes of an ontology and
the network of relations connecting them are the basis to define their inferential
properties. Similarly to the cognitive processes of categorization and concept
formation, semantic types are designed at various levels of generality, abstract-
ing away from specific features of meanings. Actually, semantic types usually
form chains of conceptual classes ordered by subsumption relations: AIRPLANE,
FLYING VEHICLE, VEHICLE INANIMATE OBJECT, CONCRETE OBJECT. Such
chains allow systems to draw inferences that are crucial in many applicative
contexts in NLP, such as Information Extraction, anaphora resolution, textual
entailment recognition (Dagan et al., 2006), etc. Consider for instance the fol-
lowing sequence of sentences: The bus suddenly stopped along the road and
the passengers went out of the vehicle. The engine was broken. Capturing its
information content requires NLP systems to resolve some cases of “bridging”
anaphora, i.e. the referential phenomenon occurring when the referent of a lin-
guistic expression can be determined only by recovering a meaningful implicit
relation with an already mentioned entity or event. The co-reference between
’vehicle’ and ’bus’ can be resolved if the hyperonymic relation holding between
these nouns is known to the system. Similarly, the availability in a computational
lexicon of the information that engines are parts of buses, can lead the system to
infer the obvious fact that the broken engine belongs to the bus mentioned in the
first sentence.

14.2.4 Argument structure

One of the most common use contexts for ontolexical resources in theoretical
and computational linguistics is to specify the combinatorial constraints of lexical
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items. Some ontolexicons provide explicit representational devices of argument
structure properties, such as number and semantic types of arguments, semantic
roles, argument alternations and realizations (Levin and Hovav, 2005), etc. This
is for instance the case of FrameNet (Baker et al., 2003), Omega (cf. chapter 15
in this volume), VerbNet (Kipper-Schuler, 2005), SIMPLE (Lenci et al., 2000),
among the others. It is also a common practice to start from a given ontology
of types and then to try to use its conceptual atoms to specify the selectional
preferences of predicative expressions. For instance, although WordNet itself
does not encode argument structure properties, it has been widely used as a source
of semantic types for argument semantic specification (Resnik, 1996). Light and
Greiff (2002) and Brockmann and Lapata (2003) provide interesting surveys and
evaluations of various WordNet based approaches to selectional preferences. Gen-
erally, the structure of the ontology is exploited in order to identify the suitable
level of semantic abstraction of the arguments that can typically occur in a certain
predicate role (e.g. as direct objects of ’eat’, or as subjects of ’drive’). Given
the notorious difficulties of defining the predicate selectional preferences as sets
of necessary and sufficient conditions, probabilistic models are typically used to
establish the proper mapping, i.e. to determine the type or types that best capture
the combinatorial constraints of predicates.

It goes without saying that the role of ontolexical resources in providing suit-
able representations for predicative structures is of paramount importance for a
large number of tasks in NLP. Selectional preferences can act as key constraints
for parsing, Question Answering, and relation extraction. Moreover, event iden-
tification in texts also requires access to information about the semantic roles
expressed by predicates. Semantic role labeling (Gildea and Jurafsky, 2002; Erk
and Padó, 2006b) exploits resources such as FrameNet that provide the infor-
mation about predicate argument structures, argument semantic roles, and the
inferential relations between these roles (e.g. that a driver is a type of agent).

14.2.5 The challenges of the ontolex interface

So far so good. Ontolexical resources appear to be undoubtedly important
components in knowledge-intensive NLP applications involving tasks that cru-
cially depend on knowledge about the structure and organization of a conceptual
domain, and on the semantic content of the lexical and grammatical constructions
describing this domain. Ontolexical systems can fulfill this role to the extent
that they are able to provide suitable formal characterizations of the repertoire
of semantic types and of the mapping between the language system and the
conceptual system. But, what are the challenges to achieve these goals?

The main problem is that the interface between language and concepts that
ontolexicons purport to represent is notoriously highly complex. The principles
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governing this interface are still under many respects obscure and to a large extent
defy precise formalizations. In general, no naive mapping between lexical and
conceptual systems can pretend to capture the order of complexity shown by
the semantic behavior of natural language expressions. Polysemy, metaphor,
metonymy and vagueness are only some examples of the rich semantic phe-
nomenology through which this complexity manifests ubiquously in language.
These phenomena are systematic, in the sense that they present specific reg-
ularities within a language and across languages (Pustejovsky, 1995). At the
same time, they represent also systemic features of natural language, since they
are inherent properties of its semantic organization and of the way the mapping
between the conceptual and language systems have become established.

These pervasive semantic phenomena point toward a non-naive relationship
between concepts - as representations of categories of entities - and meanings
- as the semantic content of linguistic expressions. Most of the theoretical and
computational literature in semantics (this chapter included) usually tends to treat
these two terms as essentially interchangeable, with meanings being regarded
as concepts mapped on or linked to linguistic symbols that are conventionally
used to communicate them. Actually, this equation is more or less explicitly
assumed in many computational lexicons (e.g. WordNet), whose word senses
descriptions are often interpreted as concepts of an ontology.1 Its widespread
use notwithstanding, the meaning–concept equation is however not granted at all.
Indeed, in recent psychological research on human semantic representation and
categorization systems, there is rich evidence supporting the view that these two
notions should be kept well distinguished (Murphy, 2002; Vigliocco and Vinson,
2007). This, obviously, does not mean to deny that concepts and meanings are
related, but rather that this relation can not be assumed to be one of straightfor-
ward “ontological”F identity. In fact, if this assumption is dropped, the notion
itself of ontolexical interface gains much more relevance as the place at which
the complex interplay between conceptual systems and the semantics of natural
language can be represented and investigated.

A second issue raised by semantic phenomenology is the relationship between
the meanings of lexical expressions as captured by ontolexical resources and
their interpretation in context. Ontolexical resources are generally systems of
semantics types which are defined and characterized more or less independently
of the typical linguistic contexts in which these types are used. The crucial issue
is to understand the extent to which context enters into the semantic constitution
of linguistic expressions. In fact, lexical meaning is to a large extent a context-
sensitive reality, and phenomena like polysemy or metonymy should be more

1There are also exceptions. An example is provided by the Omega Ontology (chapter
15 this volume), which includes an explicit distinction between the level of word sense
description and the level of conceptual representation.
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properly modeled as the results of sense generation processes in context (Puste-
jovsky, 1995). Lexical expressions have a semantic potential that gets realized
as specific senses or interpretations when they combine with other linguistic
expressions in syntagmatic contexts. It is worth emphasizing that the importance
of these issues greatly exceeds their centrality for theoretical semantic research.
Given the aim of ontolexical systems at being effective knowledge resources for
NLP systems, they can not but face the challenges set by the different creative
ways in which lexical items are used in texts. Tackling these phenomena raises
the key question of whether they should be accounted at the representational level,
i.e. within the lexicon or the ontology, or rather at the processing level, i.e. by
those systems that will use ontolexical knowledge within the larger perspective
of text understanding. The answer to this notorious dilemma deeply affects the
structure of ontolexical resources themselves, as well as the way they can be used
in NLP tasks. For instance, wiring too many polysemous or metaphorical uses
in the lexicon typically results into very granular sense distinctions. These will
in turn negatively impact on systems that need to map such fine-grained sense
distinctions on texts, e.g. for Word Sense Disambiguation or Machine Translation.
Therefore, enhancing the usability of lexical semantic resources for NLP tasks
necessary requires a better understanding of the theoretical principles governing
the ontolex interface. Actually, its domain should not be limited to the character-
ization of binary relations between concepts and lexical items, but should instead
cover the threefold interaction between the conceptual system, lexical expressions
and the linguistic contexts that shape and modulate their senses.

14.3 Creating ontolexical knowledge with NLP

Every time we introduce a new item in a ontology we perform “an act of
creation” (Hovy, 2005). Typically, this demiurgic experience is carried out by
a domain expert, who builds the ontology either directly or indirectly, in the
latter case by providing another ’ontologizer’ with the necessary information
about the domain structure. In either case, the human expert is supposed to be
the most reliable knowledge source, from which the various components of an
ontology can be made explicit and formalized. The key role of human expertise
notwithstanding, another not less crucial knowledge source for ontology building
is represented by natural language texts. Indeed, documents – from Wikipedia
to scientific papers and technical reports – are the primary repository of the
knowledge of a certain community. Therefore, they can be mined to identify
the knowledge items most relevant to characterize a particular domain, and use
them to feed the ontology creation process.
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The challenge in using document sources for ontology development is obvi-
ously how to carve the formal structure of the conceptual system out of the
implicit and informal ways in which knowledge is expressed and encoded in
texts. The role of NLP methods and tools is exactly to help to bridge this gap,
by extracting the relevant pieces of knowledge from texts through various levels
of processing and analysis of their linguistic structure. The use of NLP – in
combination with machine learning, and AI-derived methods – to acquire knowl-
edge from texts in support to ontology development is now commonly referred
to (especially in the Semantic Web community) as ontology learning.2 Indeed,
ontology learning holds a high ’family resemblance’ with the long-standing line
of research in computational linguistics concerning (semi-)automatic acquisition
of lexical information from texts (Manning and Schütze, 1999) in support to the
development of computational lexical resources. Although there are some reasons
to keep these two fields apart (Buitelaar et al., 2005), the existence of a strong
commonality of methods and intents is undeniable. Indeed, many popular tech-
niques for ontology learning were originally born and developed in the context
of lexical acquisition. The possible complementarity between ontology learning
and lexical acquisition rather lies in a difference of emphasis with respect to their
goals. While the purpose of ontology learning is to support the development
of conceptual resources, lexical acquisition is generally more oriented toward
the text-driven acquisition of specific linguistic properties of lexical items (e.g.
subcategorization patterns, selectional preferences, synonymy relations, etc.).

In the context of ontolexical resources – with their strong interaction and
interplay between ontological and lexical knowledge – clearly the overlapping
between ontology learning and lexical acquisition also increases. The boundaries
between these two enterprises become so tenuous that the term of ontolexical
learning seems to be perfectly justified. What is worth emphasizing is that in
both cases NLP directly enters into the life cycle of knowledge, by supporting the
process of creation and growth of ontolexical resources. The latter is surely the
phase in which the role of text-driven learning is most effective. In fact, although
there are cases in which a whole ontology is bootstrapped from natural language
sources, a much more common scenario is the one in which NLP techniques are
used to extend and enrich an existing, human-made ontolexical resource. For
instance, there are countless works focusing on the (semi)-automatic extension
of WordNet through lexical information automatically harvested from corpora.
Pustejovsky et al. (2002) apply NLP and statistical techniques to extend and
adapt UMLS, the most important knowledge organization system in the medical
domain. Similar techniques are also used by Kawtrakul and Imsombut (chapter
17, this volume) for the maintenance of an ontology in the agricultural domain.

2Actually, ontology learning is a much broader field encompassing also knowledge
acquisition from non-textual sources. Nevertheless, I will use this term only to refer to
knowledge acquisition from texts.
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The spectrum of solutions offered to the problem of ontolexical learning is
incredibly wide, and the number of publications devoted to it huge. Rather than
attempting an impossible as much as useless survey of existing approaches to
create knowledge with NLP methods, I will here focus on three general questions:
what pieces of knowledge can we extract with NLP? from which sources? how
is NLP used to extract ontolexical knowledge? There is a fourth issue that is
also worth touching: What for? That is to say, what are the advantages of
using NLP and learning methods for ontolexical building? Apparently, there is
a very simple and direct answer, which usually appears at the beginning of every
paper on this topic, i.e. because it is convenient, since it makes the process of
ontolexical development easier and faster. However, we will see that this is not
the only rationale, and there are actually more theoretical reasons that suggest that
extracting ontolexical information from text data may actually enhance its quality
and usability.

14.3.1 Which ontolexical information can be extracted with NLP?

Ontologies are complex entities that contain different types of components (cf.
chapter 10 this volume): classes representing categories of objects, properties
and relations, links to the linguistic constructions that express these conceptual
entities in a given language, cross-lingual links, etc. Actually, this whole spectrum
of entities can be the target of NLP-based acquisition processes. Buitelaar et al.
(2005) propose to arrange the possible targets of knowledge acquisition in what
they refer to as the ontology learning layer cake: from the bottom to the top,
this includes terms, synonyms, concepts, concepts hierarchies, relations, and
rules. As it is clear from this list, the layers differ with respect to the increasing
degree of abstraction from the linguistic surface, and consequently with respect
to the complexity of the learning task itself. Extracting the relevant domain
terminology from a text collection is a crucial step within ontology learning and is
now mature for real-scale applications (Frantzi and Ananiadou, 1999; Jacquemin,
2001). Synonymy detection methods have achieved impressive results, and their
performance is now approaching human-like performance (Lin, 1998b; Rapp,
2003). Much effort is also devoted to the text-driven identification of taxonomical
and other non-hierarchical relations (Hearst, 1992; Cimiano et al., 2005; Pantel
and Pennacchiotti, 2006), although further research is needed to improve the
accuracy of relation learning.3

Besides the entities mentioned in the “layer cake”, other important pieces of
knowledge that can be acquired automatically from texts are the instances of
the ontology classes. This issue is usually considered to lie outside the specific

3For further references on these issues cf. Buitelaar et al. (2005).
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field of ontology learning, and receives the name of ontology population. Yet,
it is surely an important part of the general ontology development cycle: for
instance, acquiring information about which entities in a domain are instances
of a particular ontology class, is an important condition to enhance the usability
of the ontology for various tasks or applications (cf. chapter 16 in this volume,
for the case of Question Answering). Interestingly, Nédellec and . (2005) point
out the connections between Information Extraction - as the task of extracting
factual information about events and entities - and ontology population. This an
important case of a virtuous circle in which an NLP core task such as Information
Extraction at the same type can play the role of ontolexical knowledge user and
developer.

Moving toward the linguistic side of ontolexical resources, the range of infor-
mation types that are targeted by text-driven acquisition processes is equally
extremely wide. Besides term extraction and synonymy detection that are shared
with the ontology learning enterprise, we can mention the acquisition of subcate-
gorization frames (Korhonen, 2002), predicate selectional preferences (McCarthy,
2001), lexicalized concept properties (Almuhareb and Poesio, 2004; Cimiano and
Wenderoth, 2007), etc. Again the state-of-the-art performances are strictly corre-
lated with the type of targeted lexical information. In general, however, it is safe
to assume that automatically extracted information is constantly gaining centrality
and importance for the development and extension of ontolexical resources.

14.3.2 Which text sources can be used?

Until now we have generally talked of text-driven knowledge extraction, but
actually an important parameter in ontolexical learning methods concerns the type
of natural language source. A major divide exists between knowledge extrac-
tion from semi-structured texts such as thesauri, glossaries and machine readable
dictionaries, and knowledge extraction from text corpora. In the former case,
the input is represented by texts that are already designed to act as knowledge
and lexical resources, although their structure is typically not a formal one and
usually addressed to a human user. For instance, a long-standing line of research
in computational linguistics has applied NLP techniques to convert dictionary
definitions into structured semantic entities to populate computational lexicons
(cf. for instance the ACQUILEX projects). The advantage of using existing
human-oriented knowledge resources is the possibility to exploit their partial
structure (e.g. the conceptual categories of a thesaurus or the sense distinctions
in a dictionary) to spell-out the domain conceptual organization. In fact, the
thesauri or glossaries already available in many technical domains represent major
repositories of the knowledge shared by a community, and therefore provide key
input to determine the relevant domain concepts and structure. On the other hand,
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the use of these semi-structured text sources have shortcomings as well, the most
important one being the fact that they are themselves limited and biased by the
fact of being originally designed for human users. For instance, a dictionary entry
for a word may give useful information for a human reader to understand bits of
its meaning, but at the same time fail to provide key semantic properties necessary
for an application to process that same word in a certain NLP task.

To overcome the limitations of semi-structured lexical resources, most
approaches to ontolexical learning use text corpora.4 The basic assumption is
that the concepts relevant to organize a particular domain of knowledge can be
extracted from texts representative of that domain. Although the fact that the
relevant pieces of knowledge are only implicitly encoded in texts provides a
high challenge for NLP methods, corpus processing is surely the most promis-
ing source for ontology population, extension and maintenance. Since ontology
learning is mostly directed toward the vertical enrichment of domain ontologies,
specialized corpora represent the preferred data source. For instance, the Medline
collection of medical abstract can be an endless knowledge mine to refine and
extend medical ontologies (Pustejovsky et al., 2002). On the other hand, large
scale, open domain corpora are used as well. Large corpora are in fact useful to
address or limit the negative effect of data sparseness, and many approaches now
regard the Web itself as an important resource to extract semantic information.
The applications of NLP methods to on-line encyclopedia such as Wikipedia
could represent an interesting compromise between the use of semi-structured
knowledge source and corpus processing for ontology learning.

14.3.3 How to use NLP to extract ontolexical knowledge?

Ontolexical learning is typically carried out through some mixture of text anal-
ysis with NLP tools – from lemmatization and PoS tagging to different forms of
shallow and deep parsing – together with machine learning or statistical methods
to identify and weigh the extracted pieces of knowledge. The particular type
of linguistic processing and statistical method provide the main parameters of
variation among existing approaches to ontolexical learning. Within this large
spectrum, one major family of algorithms is based on the a priori identification
of linguistic patterns univocally associated with particular types of knowledge
or semantic relations. This trend of research has been opened by the seminal
work of (Hearst, 1992), who used automatically extracted patterns like such

4Hybrid approaches also exist, that use combinations of text corpora and structured
knowledge resources for ontology learning. Cf. for instance Kawtrakul and Imsombut
(chapter 17 in this volume).
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NPh as NP1 or NP2 to identify pairs of concepts linked by hyperonymic or co-
hyponymic relation. For instance, the identification in a corpus of the expression
such aircrafts like jets or helicopters as an instance of the above pattern, would
be taken as evidence that ’jet’ and ’helicopter’ are hyponyms of ’aircraft’. This
method includes a sort of weak supervision, since the linguist must decide a priori
which patterns are associated with which semantic relations. The patterns can be
more or less abstract depending on the type of text processing that is performed
(e.g. tokenization, shallow parsing, etc.). They are then searched on a large
corpus and then statistically filtered to reduce noise. The increasing popularity
of pattern-based methods (Berland and Charniak (1999, Widdows and Dorow
(2002, Almuhareb and Poesio (2004, Cimiano and Wenderoth (2007) among
many others) is due to the fact that they are very promising in allowing the explicit
’typing’ of the extracted knowledge, thereby facilitating its possible mapping onto
existing ontologies. Yet, this strategy has also various shortcomings. First of all, it
often runs into data-sparseness problem, since the relevant patterns are generally
very rare. A common way to mitigate this problem is to use Web searches to
have reliable statistics of linguistic patterns. Secondly, and most crucially, this
approach works well only provided that we are able to identify easy-to-mine pat-
terns, univocally associated with the target knowledge type. The problem is that
this univocity is very rare in natural language, and most patterns are ambiguous
or polysemous, since they encode very different types of semantic relations. For
instance, the pattern X has Y can be used to expressed a meronymic relation (e.g. a
car has four wheels), but also a possessive relation (e.g. this man has a car). This
may result in high levels of noise, negatively impacting on the system precision.

Other methods for knowledge extraction instead adopt a fully unsupervised
approach, and try to construct lexical semantic representations out of word statis-
tical distributions in corpora. Rather than searching for the words that instanti-
ate a number of pre-selected and (supposedly) semantically meaningful patterns,
semantic space models represent a target word as a point in a n-dimensional vec-
tor space, constructed from the observed distributional patterns of co-occurrence
of its neighboring words. Co-occurrence information is usually collected in a
frequency matrix, where each row corresponds to a target word and each column
represents its linguistic context. The assumption lying behind this type of seman-
tic representation is the so–called “distributional hypothesis”, i.e. that two words
are semantically similar to the extent that they occur in similar contexts (Harris,
1968; Miller and Charles, 1991). Vectorial representations are used to estimate
the semantic relatedness between two words on the grounds of their distance in
the n-dimensional vector space. A huge spectrum of variation exists among these
models, mostly due to the particular statistical and mathematical technique used
to process the co-occurrence vectors, and to the definition of linguistic context.
In Latent Semantic Analysis (Landauer and Dumais, 1997) the context is repre-
sented by a whole document in a collection and the word semantic similarity is
computed in a reduced dimensionality space, obtained through the Singular Value
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Decomposition of the original frequency matrix. Alternatively, the context can be
provided by a window of n words surrounding the target word (cf. Hyperspace
Analogue to Language, (Burgess and Lund, 1997).5 Other approaches instead
adopt a syntactically-enriched notion of context (Lin, 1998b; Padó and Lapata,
2007): i.e. two words are said to co-occur if they are linked by a certain syntactic
relation (e.g. subject, modifier, etc.). This latter method is often claimed to be
able to produce much more accurate semantic spaces, although a much heavier
corpus pre-processing is required.

Semantic space models are very good in finding synonym pairs. For instance,
Rapp (2003) reports 92.50% of accuracy in the synonym detection task carried
out on the TOEFL dataset. Still, a major shortcoming of these methods is rep-
resented by the fact that their outcome is typically formed only by a quantitative
assessment of the degree of semantic association between two words, with the
type of relation remaining totally underspecified. Actually, the space of semantic
neighbors of a target word can be highly heterogeneous, and besides synonyms
it is typically populated by meronyms, co-hyponyms, or simply words belonging
to the same semantic domain. Therefore, while the output of these methods can
surely provide useful hints to evaluate the degree of semantic relatedness between
two or more words, much work is still needed to carve actual semantic structure
out of distributional spaces.

14.3.4 Why extracting ontolexical knowledge using NLP?

It is well-known that the process of developing ontologies and computational
lexicons by hand is a very time– and money–consuming enterprise. Thus, the pos-
sibility offered by ontology learning methods to automatize parts of this process
seems to be a promising way to overcome the so-called “knowledge acquisition
bottleneck” (Maedche and Staab, 2004), i.e. the fact that ontolexical resources
are terribly needed to perform new innovative steps in information technology,
and yet they are also very slow and complex to develop. The possibility of
speeding up this process thus surely counterbalances the fact that the extraction
methods are far from being perfect and noise free. Moreover, knowledge acqui-
sition is commonly regarded not as a stand-alone method for ontology expansion
or population, but rather as a support to the unavoidable human intervention
by domain experts. Within the context of the so-called Balanced Cooperative
Modeling (Morik, 1993), text-driven knowledge extraction is just a phase in the
ontology development cycle that must be complemented by human-made pruning

5But see also Random Indexing (Karlgren and Sahlgren, 2001), Infomap (Widdows,
2003), and Incremental Semantic Analysis (Baroni et al., 2007).
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and refinements to integrate the acquired knowledge within existing knowledge
resources.

Their importance notwithstanding, the practical needs of the ontolexical devel-
opment process should not be the main rationale to pursue NLP–based approaches
to knowledge acquisition. Actually, the use of text–driven learning methods
appears as a necessary condition to grant the effective usability of ontolexical
resources by NLP systems. Ontologies are nowadays used in many information
processing contexts, most of them not directly concerned with natural language
understanding. In these cases, documents can be important sources of knowl-
edge for ontology development, but nevertheless still just complementary ones.
Conversely, when we talk about using ontologies by NLP systems for the pur-
poses of understanding and extracting information content encoded in natural
language documents, then the situation is totally different. In fact, NLP needs
ontolexical resources that are well “adapted” to the texts that they are going to
process. (Pustejovsky et al., 2002) present various cases in which even a very
rich and fine–grained domain ontology such as UMLS can not be effectively
used for a NLP task such as anaphora resolution because of the very frequent
type–mismatching. In fact, words that in texts are used co-referentially and as
belonging to the same type may happen to be not assigned to the same type in the
ontology. Notice that this mismatch is not due to accidental mistakes, but rather to
the inherent multidimensional character of ontolexical systems, which may even
require orthogonal principles of organization depending on the specific use con-
texts. These may actually impose different perspectives on the same conceptual
system. Cognitive research has recently pointed out the fact that this context-
dependency is an inherent feature of the human conceptual system (Barsalou,
2005). The phenomena of sense creation and semantic dynamics we saw above
also point toward the same direction. Consistently, ontolexical resources can not
be regarded as fixed repositories of semantic descriptions, but at most as core
set of meanings that need to be customized and adapted to different domains,
applications, texts, etc. NLP and learning methods can be used to achieve this
sort of “textual attunement” of ontolexical resources, as a key condition to make
them be better fitted for semantic processing tasks.

14.4 Conclusions

There is a natural connection between NLP and ontolexical resources. One
of the main goal of the former is to understand the information and knowledge
content that is encoded in natural language structures. The latter purport at rep-
resenting knowledge systems that also happen to be expressed through natural
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language expressions. The problem is that the naturalness of this link is often hin-
dered by the way ontolexical knowledge is represented, organized and acquired.
In fact, the effective usability of ontolexical systems for practical NLP tasks is
not granted per se, and in some cases these resources have intrinsic limits that
negatively impact on the way they can be used in processing tasks. This is the
main reason why the two apparently independent moment of knowledge creation
and knowledge use are inevitably interconnected within the “circle of life” of
ontolexical systems. Indeed, NLP is part and a key protagonist of this circle.
Better understanding how knowledge can automatically be carved out of texts can
lead to ontolexical resources that are more “attuned” to the way knowledge is
expressed with natural language. In turn, this promises to pave the way to better
ways in which knowledge resources can be employed to boost NLP technology.


